1
|
Nizi M, Maksimainen MM, Lehtiö L, Tabarrini O. Medicinal Chemistry Perspective on Targeting Mono-ADP-Ribosylating PARPs with Small Molecules. J Med Chem 2022; 65:7532-7560. [PMID: 35608571 PMCID: PMC9189837 DOI: 10.1021/acs.jmedchem.2c00281] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Indexed: 12/13/2022]
Abstract
Major advances have recently defined functions for human mono-ADP-ribosylating PARP enzymes (mono-ARTs), also opening up potential applications for targeting them to treat diseases. Structural biology combined with medicinal chemistry has allowed the design of potent small molecule inhibitors which typically bind to the catalytic domain. Most of these inhibitors are at the early stages, but some have already a suitable profile to be used as chemical tools. One compound targeting PARP7 has even progressed to clinical trials. In this review, we collect inhibitors of mono-ARTs with a typical "H-Y-Φ" motif (Φ = hydrophobic residue) and focus on compounds that have been reported as active against one or a restricted number of enzymes. We discuss them from a medicinal chemistry point of view and include an analysis of the available crystal structures, allowing us to craft a pharmacophore model that lays the foundation for obtaining new potent and more specific inhibitors.
Collapse
Affiliation(s)
- Maria
Giulia Nizi
- Department
of Pharmaceutical Sciences, University of
Perugia, 06123 Perugia, Italy
| | - Mirko M. Maksimainen
- Faculty
of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 5400 Oulu, Finland
| | - Lari Lehtiö
- Faculty
of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 5400 Oulu, Finland
| | - Oriana Tabarrini
- Department
of Pharmaceutical Sciences, University of
Perugia, 06123 Perugia, Italy
| |
Collapse
|
2
|
Cheng H, Zhu YQ, Liu PF, Yang KQ, Yan J, Sang W, Tang XS, Zhang R, Chen C. Switchable and Scalable Heteroarylation of Primary Amines with 2-Chlorobenzothiazoles under Transition-Metal-Free and Solvent-Free Conditions. J Org Chem 2021; 86:10288-10302. [PMID: 34288680 DOI: 10.1021/acs.joc.1c01019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
2-Aminobenzothiazoles comprise a valuable structural motif, which prevails in versatile natural products and biologically active compounds. Herein, a switchable and scalable C-N coupling protocol was developed for the synthesis of these compounds from 2-chlorobenzothiazoles and primary amines. Gratifyingly, this protocol was achieved under transition-metal-free and solvent-free conditions. Moreover, introducing an appropriate amount of NaH completely switched the selectivity from mono- toward di-heteroarylation, and further investigations provided a rationale for this new finding. Furthermore, gram-scale synthesis of representative products 3a and 4a was realized by applying operationally simple and glovebox-free procedures, which revealed the practical usefulness of this work. Finally, evaluation of the quantitative green metrics provided evidence that our protocol was superior over the literature ones in terms of green chemistry and sustainability.
Collapse
Affiliation(s)
- Hua Cheng
- Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, 296 Longzhong Road, Xiangyang 441053, P. R. China
| | - Yan-Qiu Zhu
- Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, 296 Longzhong Road, Xiangyang 441053, P. R. China
| | - Peng-Fei Liu
- Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, 296 Longzhong Road, Xiangyang 441053, P. R. China
| | - Kai-Qiang Yang
- Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, 296 Longzhong Road, Xiangyang 441053, P. R. China
| | - Jin Yan
- Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, 296 Longzhong Road, Xiangyang 441053, P. R. China
| | - Wei Sang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, P. R. China
| | - Xiao-Sheng Tang
- College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China.,School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Rui Zhang
- Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, 296 Longzhong Road, Xiangyang 441053, P. R. China
| | - Cheng Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, P. R. China
| |
Collapse
|
3
|
Schenkel LB, Molina JR, Swinger KK, Abo R, Blackwell DJ, Lu AZ, Cheung AE, Church WD, Kunii K, Kuplast-Barr KG, Majer CR, Minissale E, Mo JR, Niepel M, Reik C, Ren Y, Vasbinder MM, Wigle TJ, Richon VM, Keilhack H, Kuntz KW. A potent and selective PARP14 inhibitor decreases protumor macrophage gene expression and elicits inflammatory responses in tumor explants. Cell Chem Biol 2021; 28:1158-1168.e13. [PMID: 33705687 DOI: 10.1016/j.chembiol.2021.02.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/18/2020] [Accepted: 02/11/2021] [Indexed: 11/28/2022]
Abstract
PARP14 has been implicated by genetic knockout studies to promote protumor macrophage polarization and suppress the antitumor inflammatory response due to its role in modulating interleukin-4 (IL-4) and interferon-γ signaling pathways. Here, we describe structure-based design efforts leading to the discovery of a potent and highly selective PARP14 chemical probe. RBN012759 inhibits PARP14 with a biochemical half-maximal inhibitory concentration of 0.003 μM, exhibits >300-fold selectivity over all PARP family members, and its profile enables further study of PARP14 biology and disease association both in vitro and in vivo. Inhibition of PARP14 with RBN012759 reverses IL-4-driven protumor gene expression in macrophages and induces an inflammatory mRNA signature similar to that induced by immune checkpoint inhibitor therapy in primary human tumor explants. These data support an immune suppressive role of PARP14 in tumors and suggest potential utility of PARP14 inhibitors in the treatment of cancer.
Collapse
Affiliation(s)
- Laurie B Schenkel
- Department of Molecular Discovery, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA; MOMA Therapeutics, Cambridge, MA 02142, USA
| | - Jennifer R Molina
- Department of Biological Sciences, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA
| | - Kerren K Swinger
- Department of Molecular Discovery, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA; Xilio Therapeutics, Waltham, MA 02451, USA
| | - Ryan Abo
- Department of Biological Sciences, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA; Obsidian Therapeutics, Cambridge, MA 02138, USA
| | - Danielle J Blackwell
- Department of Molecular Discovery, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA
| | - Alvin Z Lu
- Department of Biological Sciences, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA
| | - Anne E Cheung
- Department of Biological Sciences, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA; A2Empowerment, Arlington, MA 02474, USA
| | - W David Church
- Department of Molecular Discovery, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA
| | - Kaiko Kunii
- Department of Biological Sciences, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA
| | - Kristy G Kuplast-Barr
- Department of Biological Sciences, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA
| | - Christina R Majer
- Department of Molecular Discovery, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA
| | - Elena Minissale
- Department of Biological Sciences, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA
| | - Jan-Rung Mo
- Department of Biological Sciences, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA
| | - Mario Niepel
- Department of Biological Sciences, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA
| | - Christopher Reik
- Department of Molecular Discovery, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA; Bain & Company, Boston, MA 02116, USA
| | - Yue Ren
- Department of Molecular Discovery, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA
| | - Melissa M Vasbinder
- Department of Molecular Discovery, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA
| | - Tim J Wigle
- Department of Molecular Discovery, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA
| | - Victoria M Richon
- Department of Molecular Discovery, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA; Department of Biological Sciences, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA
| | - Heike Keilhack
- Department of Biological Sciences, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA
| | - Kevin W Kuntz
- Department of Molecular Discovery, Ribon Therapeutics, Inc., Cambridge, MA 02140, USA.
| |
Collapse
|
5
|
Xie Z, Chen R, Ma M, Kong L, Liu J, Wang C. Copper‐catalyzed one‐pot coupling reactions of aldehydes (ketones), tosylhydrazide and 2‐amino(benzo)thiazoles: An efficient strategy for the synthesis of
N
‐alkylated (benzo)thiazoles. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zengyang Xie
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic MedicineJining Medical University Jining 272067 China
| | - Ruijiao Chen
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic MedicineJining Medical University Jining 272067 China
| | - Mingfang Ma
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic MedicineJining Medical University Jining 272067 China
| | - Lingdong Kong
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic MedicineJining Medical University Jining 272067 China
| | - Jun Liu
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic MedicineJining Medical University Jining 272067 China
| | - Cunde Wang
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225002 China
| |
Collapse
|
6
|
Wang P, Felsing DE, Chen H, Raval SR, Allen JA, Zhou J. Synthesis and Pharmacological Evaluation of Noncatechol G Protein Biased and Unbiased Dopamine D1 Receptor Agonists. ACS Med Chem Lett 2019; 10:792-799. [PMID: 31098001 DOI: 10.1021/acsmedchemlett.9b00050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/05/2019] [Indexed: 12/29/2022] Open
Abstract
Noncatechol heterocycles have recently been discovered as potent and selective G protein biased dopamine 1 receptor (D1R) agonists with superior pharmacokinetic properties. To determine the structure-activity relationships centered on G protein or β-arrestin signaling bias, systematic medicinal chemistry was employed around three aromatic pharmacophores of the lead compound 5 (PF2334), generating a series of new molecules that were evaluated at both D1R Gs-dependent cAMP signaling and β-arrestin recruitment in HEK293 cells. Here, we report the chemical synthesis, pharmacological evaluation, and molecular docking studies leading to the identification of two novel noncatechol D1R agonists that are a subnanomolar potent unbiased ligand 19 (PW0441) and a nanomolar potent complete G protein biased ligand 24 (PW0464), respectively. These novel D1R agonists provide important tools to study D1R activation and signaling bias in both health and disease.
Collapse
|
11
|
Abstract
![]()
Pd-catalyzed
cross-coupling reactions that form C–N bonds
have become useful methods to synthesize anilines and aniline derivatives,
an important class of compounds throughout chemical research. A key
factor in the widespread adoption of these methods has been the continued
development of reliable and versatile catalysts that function under
operationally simple, user-friendly conditions. This review provides
an overview of Pd-catalyzed N-arylation reactions found in both basic
and applied chemical research from 2008 to the present. Selected examples
of C–N cross-coupling reactions between nine classes of nitrogen-based
coupling partners and (pseudo)aryl halides are described for the synthesis
of heterocycles, medicinally relevant compounds, natural products,
organic materials, and catalysts.
Collapse
Affiliation(s)
- Paula Ruiz-Castillo
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|