1
|
Nonn M, Fustero S, Kiss L. Application of 2-Azabicyclo[2.2.1]Hept-5-En-3-One (Vince Lactam) in Synthetic Organic and Medicinal Chemistry. CHEM REC 2024; 24:e202400070. [PMID: 39008895 DOI: 10.1002/tcr.202400070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/22/2024] [Indexed: 07/17/2024]
Abstract
2-Azabicyclo[2.2.1]hept-5-en-3-one (Vince lactam) is known to be a valuable building block in synthetic organic chemistry and drug research. It is an important precursor to access of some blockbuster antiviral drugs such as Carbovir or Abacavir as well as other carbocyclic neuraminidase inhibitors as antiviral agents. The ring C=C bond of the Vince lactam allows versatile chemical manipulations to create not only functionalized γ-lactams, but also γ-amino acid derivatives with a cyclopentane framework. The aim of the current account is to summarize the chemistry of Vince lactam, its synthetic utility and application in organic and medicinal chemistry over the last decade.
Collapse
Affiliation(s)
- Melinda Nonn
- MTA TTK Lendület Artificial Transporter Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Center for Natural Sciences, H-1117, Budapest, Magyar tudósok krt. 2, Hungary
| | - Santos Fustero
- Department of Organic Chemistry, University of Valencia, Pharmacy Faculty, València, 46100-Burjassot Valencia, Spain
| | - Loránd Kiss
- Institute of Organic Chemistry, Stereochemistry Research Group, HUN-REN Research Center for Natural Sciences, H-1117, Budapest, Magyar tudósok krt. 2, Hungary
| |
Collapse
|
2
|
Salamci E, Lafzi AK. Efficient synthesis of aziridinecyclooctanediol and 3-aminocyclooctanetriol. Beilstein J Org Chem 2022; 18:1539-1543. [PMID: 36447522 PMCID: PMC9663974 DOI: 10.3762/bjoc.18.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/03/2022] [Indexed: 09/08/2024] Open
Abstract
Cyclooctene endoperoxide was used as the key compound for the synthesis of aziridinecyclooctanediol and 3-aminocyclooctanetriol. Reduction of the cyclooctene endoperoxide, prepared by photooxygenation of cis,cis-1,3-cyclooctadiene, with zinc gave a cyclooctenediol and then benzylation of the hydroxy group yielded dibenzylated cyclooctene. Oxidation of the latter compound by OsO4/NMO followed by mesylation of the hydroxy group provided bis(benzyloxy)cyclooctane-1,2-diyl dimethanesulfonate. Reaction of the bis(benzyloxy)cyclooctane-1,2-diyl dimethanesulfonate with NaN3 gave 2-azido-3,8-bis(benzyloxy)cyclooctyl methanesulfonate. Reduction of the azide group and debenzylation to give an amine provided the new 3-aminocyclooctanetriol. Treatment of the 2-azido-3,8-bis(benzyloxy)cyclooctyl methanesulfonate with Zn/NH4Cl and debenzylation resulted in the target aziridinecyclooctanediol.
Collapse
Affiliation(s)
- Emine Salamci
- Department of Chemistry, Faculty of Sciences, Atatürk University, 25240 Erzurum, Turkey
| | - Ayse Kilic Lafzi
- Department of Chemistry, Faculty of Sciences, Atatürk University, 25240 Erzurum, Turkey
| |
Collapse
|
3
|
Chloramine-T (N-chloro-p-toluenesulfonamide sodium salt), a versatile reagent in organic synthesis and analytical chemistry: An up to date review. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2021.101416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
4
|
Kiss L, Benke Z, Remete AM, Fülöp F. Diversity-oriented Functionalization of Cyclodienes Through Selective Cycloaddition/Ring-opening/Cross-metathesis Protocols; Transformation of a "Flatland" into Three-dimensional Scaffolds With Stereo- and Regiocontrol. CHEM REC 2020; 20:1129-1141. [PMID: 32720742 DOI: 10.1002/tcr.202000070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 01/07/2023]
Abstract
This article presents selective transformations of some readily available cyclodienes through simple chemical procedures into novel functionalized small-molecular entities. The syntheses hereby described involved selective cycloadditions, followed by ring-opening metathesis of the resulting β-lactam or isoxazoline derivatives and selective cross-metathesis by differentiation of the olefin bonds on the alkenylated heterocycles. The cross-metathesis transformations have been detailed, which were performed under various experimental conditions with the aim of exploring chemodiscrimination of the olefin bonds and delivering the corresponding functionalized β-lactam or isoxazoline derivatives.
Collapse
Affiliation(s)
- Loránd Kiss
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,University of Szeged, I, nterdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, H-6720, Szeged, Eötvös u. 6, Hungary
| | - Zsanett Benke
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,University of Szeged, I, nterdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, H-6720, Szeged, Eötvös u. 6, Hungary
| | - Attila M Remete
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,University of Szeged, I, nterdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, H-6720, Szeged, Eötvös u. 6, Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,University of Szeged, I, nterdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, H-6720, Szeged, Eötvös u. 6, Hungary.,MTA-SZTE Stereochemistry Research Group, Hungarian Academy of Sciences, H-6720, Szeged, Eötvös u. 6, Hungary
| |
Collapse
|
5
|
Singh GS. Advances in synthesis and chemistry of aziridines. ADVANCES IN HETEROCYCLIC CHEMISTRY 2019. [DOI: 10.1016/bs.aihch.2018.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Akhtar R, Naqvi SAR, Zahoor AF, Saleem S. Nucleophilic ring opening reactions of aziridines. Mol Divers 2018; 22:447-501. [PMID: 29728870 DOI: 10.1007/s11030-018-9829-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/23/2018] [Indexed: 12/29/2022]
Abstract
Aziridine ring opening reactions have gained tremendous importance in the synthesis of nitrogen containing biologically active molecules. During recent years, a great effort has been put forward by scientists toward unique bond construction methodologies via ring opening of aziridines. In this regard, a wide range of chiral metal- and organo-catalyzed desymmetrization reactions of aziridines have been reported with carbon, sulfur, oxygen, nitrogen, halogen, and other nucleophiles. In this review, an outline of methodologies adopted by a number of scientists during 2013-2017 for aziridine ring opening reactions as well as their synthetic applications is described.
Collapse
Affiliation(s)
- Rabia Akhtar
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Syed Ali Raza Naqvi
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Sameera Saleem
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| |
Collapse
|
7
|
Kiss L, Fülöp F. Selective Synthesis of Fluorine-Containing Cyclic β-Amino Acid Scaffolds. CHEM REC 2017; 18:266-281. [PMID: 28892275 DOI: 10.1002/tcr.201700038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Indexed: 01/09/2023]
Abstract
Fluorine-containing organic molecules have generated increasing impact in drug research over the past decade. Their preparation and development of novel synthetic methods towards new types of fluorinated molecules among them of β-amino acid derivatives has received large interest. Our research group have designed various highly selective and stereocontrolled methods for the construction of fluorine-containing cyclic β-amino acid derivatives. The synthetic approaches developed for the synthesis of various pharmacologically interesting cyclic β-amino acid derivatives as monomers with multiple stereogenic centers might be valuable protocols for the access of other classes of organic compounds.
Collapse
Affiliation(s)
- Loránd Kiss
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,MTA-SZTE Stereochemistry Research Group, Hungarian Academy of Sciences, H-6720, Szeged, Eötvös u. 6, Hungary
| |
Collapse
|
8
|
|
9
|
Kiss L, Mándity IM, Fülöp F. Highly functionalized cyclic β-amino acid moieties as promising scaffolds in peptide research and drug design. Amino Acids 2017. [PMID: 28634827 DOI: 10.1007/s00726-017-2439-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Peptide-based drug research has received high attention in the field of medicinal chemistry over the past decade. For drug design, to improve proteolytic stability, it is desirable to include unnatural building blocks, such as conformationally restricted β-amino acid moieties, into the peptide sequence. Accordingly, the synthesis and incorporation of such conformationally rigid systems into novel type of peptides has gained large interest. Our research group has designed highly efficient methods for the construction of potential antimicrobial peptides. Moreover, a number of synthetic approaches have been developed for the synthesis of various pharmacologically interesting cyclic β-amino acid derivatives as monomers with multiple stereogenic centers.
Collapse
Affiliation(s)
- Loránd Kiss
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, 6720, Szeged, Hungary.
| | - István M Mándity
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, 6720, Szeged, Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, 6720, Szeged, Hungary.,MTA-SZTE Stereochemistry Research Group, Hungarian Academy of Sciences, Eötvös u. 6, 6720, Szeged, Hungary
| |
Collapse
|
10
|
Zayane M, Rahmouni A, Daami-Remadi M, Ben Mansour M, Romdhane A, Ben Jannet H. Design and synthesis of antimicrobial, anticoagulant, and anticholinesterase hybrid molecules from 4-methylumbelliferone. J Enzyme Inhib Med Chem 2016; 31:1566-75. [PMID: 27033638 DOI: 10.3109/14756366.2016.1158171] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We designed and synthesized new series of diverse triazoles, isoxazoles, isoxazolines, and aziridines linked 4-methylumbelliferone 1 using intermolecular 1,3-dipolar cycloaddition reactions. Structures of these compounds were established on the basis of (1)H NMR, (13)C NMR, and ESI-HRMS. All prepared compounds were evaluated for their antimicrobial, anticoagulant, and anticholinesterase activities. Interestingly, among the tested molecules, some of the analogs displayed better activities than the parent 4-methylumbelliferone 1 such as 6a and 6d for their antifungal properties. Moreover, compounds 4, 5, 6, and 7 showed the importance of the added fragments to 4-methylumbelliferone 1 via the linker methylene to have good activity.
Collapse
Affiliation(s)
- Marwa Zayane
- a Laboratoire de Chimie Hétérocyclique , Produits Naturels et Réactivité, Equipe: Chimie Médicinale et Produits Naturels, Faculté des Sciences de Monastir, Université de Monastir , Monastir , Tunisie
| | - Ameur Rahmouni
- a Laboratoire de Chimie Hétérocyclique , Produits Naturels et Réactivité, Equipe: Chimie Médicinale et Produits Naturels, Faculté des Sciences de Monastir, Université de Monastir , Monastir , Tunisie
| | - Mejda Daami-Remadi
- b UR13AGR09, Production Horticole Intégrée au Centre Est Tunisien, Centre Régional des Recherches en Horticulture et Agriculture Biologique de Chott-Mariem, Université de Sousse , Chott-Mariem , Tunisie , and
| | - Mohamed Ben Mansour
- c Laboratoire de Pharmacologie 04/UR/01-09 , Faculté de Médecine , Monastir , Tunisie
| | - Anis Romdhane
- a Laboratoire de Chimie Hétérocyclique , Produits Naturels et Réactivité, Equipe: Chimie Médicinale et Produits Naturels, Faculté des Sciences de Monastir, Université de Monastir , Monastir , Tunisie
| | - Hichem Ben Jannet
- a Laboratoire de Chimie Hétérocyclique , Produits Naturels et Réactivité, Equipe: Chimie Médicinale et Produits Naturels, Faculté des Sciences de Monastir, Université de Monastir , Monastir , Tunisie
| |
Collapse
|
11
|
Nonn M, Kiss L, Haukka M, Fustero S, Fülöp F. A Novel and Selective Fluoride Opening of Aziridines by XtalFluor-E. Synthesis of Fluorinated Diamino Acid Derivatives. Org Lett 2015; 17:1074-7. [DOI: 10.1021/acs.orglett.5b00182] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Matti Haukka
- Department
of Chemistry, University of Jyväskylä, FIN-40014, Jyväskylä, Finland
| | - Santos Fustero
- Universidad de Valencia, Facultad de Farmàcia,
Departamento de Química Orgánica, Av. Vicente Andrés Estellés, s/n 46100 Valencia, Spain
| | | |
Collapse
|