1
|
Kontra B, Mucsi Z, Ilaš J, Dunkel P. The Quinoline Photoremovable Group (PPG) Platform-A Medicinal Chemist's Approach for Photocage Development and Applications. Med Res Rev 2025. [PMID: 40221844 DOI: 10.1002/med.22111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/16/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025]
Abstract
Photoremovable protecting groups (PPGs) offer a straightforward solution for the temporary inactivation of biologically active substrates and their subsequent controlled release by light irradiation. Their relatively easy design and mode of application have made them useful tools for studying dynamic biological processes in vitro and in vivo. Recently, there has been a growing body of data investigating their potential application in the development of drug delivery systems. Of the various PPG scaffolds in use, quinoline photocages have a history of about 20 years. The structure-property relationships of quinoline PPGs, as well as alternative multibranch designs based on quinoline monomers have been thoroughly studied both experimentally and theoretically. Therefore, quinoline PPGs serve as a representative study of PPG development, showing how the various applications of quinoline photocages followed the chemical optimization or how the applications drove the chemical design. Since the raison d'être of PPGs lies in their application for light-activated release of various substrates or performing light-activated structural changes in materials, it is crucial to understand how PPGs are selected and utilized by their end-users, who are often not chemists themselves. Therefore, we discuss whether the conclusions drawn from the selected quinoline PPG family could lead to more general insights for the field as whole. As PPG-related applications still rely heavily on a limited number of chemical scaffolds, it is worth considering, what could be the reasons for the slow uptake of novel chemical scaffolds.
Collapse
Affiliation(s)
- Bence Kontra
- Institute of Organic Chemistry, Semmelweis University, Budapest, Hungary
- Department of Biological Chemistry, BrainVision Center, Budapest, Hungary
| | - Zoltán Mucsi
- Department of Biological Chemistry, BrainVision Center, Budapest, Hungary
- Department of Chemistry, Femtonics Ltd., Budapest, Hungary
- Institute of Chemistry, University of Miskolc, Miskolc, Hungary
| | - Janez Ilaš
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Dunkel
- Institute of Organic Chemistry, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| |
Collapse
|
2
|
Altia M, Anbarasan P. Reversal of Reactivity of Heyns Intermediate for the Concise Synthesis of Substituted 3-Hydroxyquinolines. J Org Chem 2024; 89:16899-16908. [PMID: 39496139 DOI: 10.1021/acs.joc.4c01285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
An efficient and general method for the synthesis of 3-hydroxyquinolines has been achieved from o-acylanilines and α-hydroxyketones in good yields. The strategy involves the intramolecular reverse trapping of the in situ generated aminoenol intermediate with an electrophilic carbonyl, viz. an interrupted Heyns rearrangement, followed by aromatization. Important features include good functional group tolerance, operational simplicity, gram-scale synthesis, and broad synthetic utility.
Collapse
Affiliation(s)
- Minakshi Altia
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
3
|
Jia Y, Cui L, Li D, Yang Y, Qie S, Su S, Hu M, Gao R. Achiral Sm(III)-Based Metal-Organic Framework as a Luminescence Sensor for Enantiodiscrimination of Quinine and Quinidine. Inorg Chem 2023; 62:16288-16293. [PMID: 37767924 DOI: 10.1021/acs.inorgchem.3c02333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
The effective discrimination and determination of the chiral antimalarial drugs quinine (QN) and quinidine (QD) are extremely important for human health. Herein, a 2D achiral Sm-based metal-organic framework (IMU-MOF1 = [Sm(tpba)(L)]n, where Htpba = 4-(2,2':6″,2'-terpyridin)-4'-ylbenzioc acid and H2L = 2,2'-biquinoline-4,4'-dicarboxylic acid) was successfully prepared by the solvothermal method. More importantly, IMU-MOF1 was designed as an ultrasensitive fluorescent probe for the identification of chiral enantiomer drugs. The limits of detection for QN and QD are 4.24 × 10-11 and 7.54 × 10-12 M, respectively. Furthermore, it was demonstrated that the stronger hydrogen-bonding interactions between IMU-MOF1 and quinine furnish a more efficient energy transfer to the ligands in the sensing process, resulting in a significant fluorescence enhancement of IMU-MOF1.
Collapse
Affiliation(s)
- Yuejiao Jia
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Linxia Cui
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Dechao Li
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Yefang Yang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Shaowen Qie
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Shuai Su
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Ming Hu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Rui Gao
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
4
|
Venkata SRG, C.Narkhede U, Jadhav VD, Naidu CG, Addada RR, Pulya S, Ghosh B. “Quinoline Consists of 1
H
‐1,2,3‐Triazole Hybrids: Design, Synthesis and Anticancer Evaluation”. ChemistrySelect 2019. [DOI: 10.1002/slct.201903938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sivarami Reddy Gangireddy Venkata
- Chemistry ServicesGVK Biosciences Pvt. Ltd, IDA Nacharam Hyderabad - 500076 India
- Department of ChemistryVignan's Foundation for Science, Technology and Research University (VFSTRU), Vadlamudi Guntur - 522213 India
| | - Umesh C.Narkhede
- Chemistry ServicesGVK Biosciences Pvt. Ltd, IDA Nacharam Hyderabad - 500076 India
| | - Vinod. D Jadhav
- Chemistry ServicesGVK Biosciences Pvt. Ltd, IDA Nacharam Hyderabad - 500076 India
| | - Challa Gangu Naidu
- Department of ChemistryVignan's Foundation for Science, Technology and Research University (VFSTRU), Vadlamudi Guntur - 522213 India
| | | | - Sravani Pulya
- Department of PharmacyBirla Institute of Technology and Science, Hyderabad Campus, Shameerpet Hyderabad - 500078 India
| | - Balaram Ghosh
- Department of PharmacyBirla Institute of Technology and Science, Hyderabad Campus, Shameerpet Hyderabad - 500078 India
| |
Collapse
|
5
|
Nosova EV, Achelle S, Lipunova GN, Charushin VN, Chupakhin ON. Functionalized benzazines as luminescent materials and components for optoelectronics. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4887] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Croissant JG, Zink JI, Raehm L, Durand JO. Two-Photon-Excited Silica and Organosilica Nanoparticles for Spatiotemporal Cancer Treatment. Adv Healthc Mater 2018; 7:e1701248. [PMID: 29345434 DOI: 10.1002/adhm.201701248] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/08/2017] [Indexed: 12/11/2022]
Abstract
Coherent two-photon-excited (TPE) therapy in the near-infrared (NIR) provides safer cancer treatments than current therapies lacking spatial and temporal selectivities because it is characterized by a 3D spatial resolution of 1 µm3 and very low scattering. In this review, the principle of TPE and its significance in combination with organosilica nanoparticles (NPs) are introduced and then studies involving the design of pioneering TPE-NIR organosilica nanomaterials are discussed for bioimaging, drug delivery, and photodynamic therapy. Organosilica nanoparticles and their rich and well-established chemistry, tunable composition, porosity, size, and morphology provide ideal platforms for minimal side-effect therapies via TPE-NIR. Mesoporous silica and organosilica nanoparticles endowed with high surface areas can be functionalized to carry hydrophobic and biologically unstable two-photon absorbers for drug delivery and diagnosis. Currently, most light-actuated clinical therapeutic applications with NPs involve photodynamic therapy by singlet oxygen generation, but low photosensitizing efficiencies, tumor resistance, and lack of spatial resolution limit their applicability. On the contrary, higher photosensitizing yields, versatile therapies, and a unique spatial resolution are available with engineered two-photon-sensitive organosilica particles that selectively impact tumors while healthy tissues remain untouched. Patients suffering pathologies such as retinoblastoma, breast, and skin cancers will greatly benefit from TPE-NIR ultrasensitive diagnosis and therapy.
Collapse
Affiliation(s)
- Jonas G. Croissant
- Chemical and Biological Engineering; University of New Mexico; 210 University Blvd NE Albuquerque NM 87131-0001 USA
- Center for Micro-Engineered Materials; Advanced Materials Laboratory; University of New Mexico; MSC04 2790, 1001 University Blvd SE, Suite 103 Albuquerque NM 87106 USA
| | - Jeffrey I. Zink
- Department of Chemistry and Biochemistry; University of California Los Angeles; 405 Hilgard Avenue Los Angeles CA 90095 USA
| | - Laurence Raehm
- Institut Charles Gerhardt de Montpellier; UMR 5253 CNRS-UM-ENSCM; Université de Montpellier; Place Eugène Bataillon 34095 Montpellier Cedex 05 France
| | - Jean-Olivier Durand
- Institut Charles Gerhardt de Montpellier; UMR 5253 CNRS-UM-ENSCM; Université de Montpellier; Place Eugène Bataillon 34095 Montpellier Cedex 05 France
| |
Collapse
|
7
|
Wang Y, Yu F, Han X, Li M, Tong Y, Ding J, Hou H. From Surprising Solvothermal Reaction to Uncommon Zinc(II)-Catalyzed Aromatic C–H Activation Reaction for Direct Nitroquinoline Synthesis. Inorg Chem 2017; 56:5953-5958. [DOI: 10.1021/acs.inorgchem.7b00653] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yazhen Wang
- The
College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Feihu Yu
- The
College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Xiao Han
- The
College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Ming Li
- The
College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yue Tong
- The
College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jie Ding
- The
College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Hongwei Hou
- The
College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
8
|
ÇATIR M. Singlet oxygen generation from poly[4-diacetoxyiodo]styrene and hydrogen peroxide. Turk J Chem 2017. [DOI: 10.3906/kim-1602-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
9
|
Croissant JG, Picard S, Aggad D, Klausen M, Mauriello Jimenez C, Maynadier M, Mongin O, Clermont G, Genin E, Cattoën X, Wong Chi Man M, Raehm L, Garcia M, Gary-Bobo M, Blanchard-Desce M, Durand JO. Fluorescent periodic mesoporous organosilica nanoparticles dual-functionalized via click chemistry for two-photon photodynamic therapy in cells. J Mater Chem B 2016; 4:5567-5574. [DOI: 10.1039/c6tb00638h] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of ethenylene-based periodic mesoporous organosilica nanoparticles for two-photon imaging and photodynamic therapy of breast cancer cells is described.
Collapse
|