1
|
Zhao LT, Wang BN, Zhang YQ, Zhang C, Liu M, Chen AL, Yuan J, Chen J, Zhou S. Design, Synthesis, Nematicidal, and Fungicidal Activities of Novel Azo and Azoxy Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2473-2481. [PMID: 38284538 DOI: 10.1021/acs.jafc.3c04847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Bursaphelenchus xylophilus (B. xylophilus) and Meloidogyne are parasitic nematodes that have caused severe ecological and economic damage in pinewood and crops, respectively. Jietacins (jietacin A and B) were found to have excellent biological activity against B. xylophilus. Based on our tremendous demand for chemicals against B. xylophilus, a novel scaffold based on the azo and azoxy groups was designed, and a series of compounds were synthesized. In the bioassay, Ia, IIa, IIc, IId, and IVa exhibited higher activity against B. xylophilus in vitro than avermectin (LC50 = 2.43 μg·mL-1) with LC50 values of 1.37, 1.12, 0.889, 1.56, and 1.10 μg·mL-1, respectively. Meanwhile, Ib, Ic, IIc, and IVa showed good inhibition effects against Meloidogyne in vivo at the concentrations of 80 and 40 μg·mL-1 with inhibition rates of 89.0% and 81.6%, 95.6% and 75.7%, 96.3% and 41.2%, and 86.8% and 78.7%, respectively. In fungicidal activity in vitro, IIb and IVa exhibited excellent effect against Botryosphaeria dothidea with the inhibition of 82.59% and 85.32% at the concentration of 10 μg·mL-1, while the inhibition of Ia was 83.16% against Rhizoctonia solani at the concentration of 12.5 μg·mL-1. Referring to the biological activity against B. xylophilus, a 3D-QASR model was built in which the electron-donating group and small group at the 4-phenylhydrazine were favorable for the activity. In general, the novel azoxy compounds, especially IIc possess great potential for application in the prevention of B. xylophilus.
Collapse
Affiliation(s)
- Lyu-Ting Zhao
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Bo-Ning Wang
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Yu-Qi Zhang
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Chuang Zhang
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Ming Liu
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, China
| | - An-Liang Chen
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Jing Yuan
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Jie Chen
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Sha Zhou
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
2
|
Salim AA, Butler MS, Blaskovich MAT, Henderson IR, Capon RJ. Natural products as anthelmintics: safeguarding animal health. Nat Prod Rep 2023; 40:1754-1808. [PMID: 37555325 DOI: 10.1039/d3np00019b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Covering literature to December 2022This review provides a comprehensive account of all natural products (500 compounds, including 17 semi-synthetic derivatives) described in the primary literature up to December 2022, reported to be capable of inhibiting the egg hatching, motility, larval development and/or the survival of helminths (i.e., nematodes, flukes and tapeworms). These parasitic worms infect and compromise the health and welfare, productivity and lives of commercial livestock (i.e., sheep, cattle, horses, pigs, poultry and fish), companion animals (i.e., dogs and cats) and other high value, endangered and/or exotic animals. Attention is given to chemical structures, as well as source organisms and anthelmintic properties, including the nature of bioassay target species, in vivo animal hosts, and measures of potency.
Collapse
Affiliation(s)
- Angela A Salim
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072.
| | - Mark S Butler
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072.
| | - Mark A T Blaskovich
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072.
| | - Ian R Henderson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072.
| | - Robert J Capon
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072.
| |
Collapse
|
3
|
Li Y, Xu W, Lei X, Xi J, Zou J, Wang G, He ZL. Base-Mediated Tandem [3 + 2] Cycloaddition/Ring Openning Reaction of Arylhydrazonoyl Chlorides with Arylnitroso Compounds for Synthesis of Substituted Diazene Oxides. J Org Chem 2023; 88:14200-14204. [PMID: 37726890 DOI: 10.1021/acs.joc.3c01427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
A base-mediated tandem [3 + 2] cycloaddition/ring opening reaction of nitrilimines generated from arylhydrazonoyl chlorides with arylnitroso compounds has been developed. This protocol provides a novel and rapid approach for the synthesis of substituted azoxy compounds under mild conditions with moderate to good yields and a broad substrate scope.
Collapse
Affiliation(s)
- Yi Li
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Weinan Xu
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Xidan Lei
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Jiangbo Xi
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Jing Zou
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Gang Wang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Zhao-Lin He
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| |
Collapse
|
4
|
Li GH, Zhang KQ. Natural nematicidal metabolites and advances in their biocontrol capacity on plant parasitic nematodes. Nat Prod Rep 2023; 40:646-675. [PMID: 36597965 DOI: 10.1039/d2np00074a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Covering: 2010 to 2021Natural nematicidal metabolites are important sources of nematode control. This review covers the isolation and structural determination of nematicidal metabolites from 2010 to 2021. We summarise chemical structures, bioactivity, metabolic regulation and biosynthesis of potential nematocides, and structure-activity relationship and application potentiality of natural metabolites in plant parasitic nematodes' biocontrol. In doing so, we aim to provide a comprehensive overview of the potential roles that natural metabolites can play in anti-nematode strategies.
Collapse
Affiliation(s)
- Guo-Hong Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, 650091, China.
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
5
|
He HY, Niikura H, Du YL, Ryan KS. Synthetic and biosynthetic routes to nitrogen-nitrogen bonds. Chem Soc Rev 2022; 51:2991-3046. [PMID: 35311838 DOI: 10.1039/c7cs00458c] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The nitrogen-nitrogen bond is a core feature of diverse functional groups like hydrazines, nitrosamines, diazos, and pyrazoles. Such functional groups are found in >300 known natural products. Such N-N bond-containing functional groups are also found in significant percentage of clinical drugs. Therefore, there is wide interest in synthetic and enzymatic methods to form nitrogen-nitrogen bonds. In this review, we summarize synthetic and biosynthetic approaches to diverse nitrogen-nitrogen-bond-containing functional groups, with a focus on biosynthetic pathways and enzymes.
Collapse
Affiliation(s)
- Hai-Yan He
- Department of Chemistry, University of British Columbia, Vancouver, Canada. .,Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Haruka Niikura
- Department of Chemistry, University of British Columbia, Vancouver, Canada.
| | - Yi-Ling Du
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
| | - Katherine S Ryan
- Department of Chemistry, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
6
|
Wibowo M, Gotfredsen CH, Sassetti E, Melchiorsen J, Clausen MH, Gram L, Ding L. Azodyrecins A-C: Azoxides from a Soil-Derived Streptomyces Species. JOURNAL OF NATURAL PRODUCTS 2020; 83:3519-3525. [PMID: 33216557 DOI: 10.1021/acs.jnatprod.0c00339] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Azoxy compounds belong to a small group of natural products sharing a common functional group with the general structure RN = N+(O-)R. Three new azoxides, azodyrecins A-C (1-3), were isolated from a soil-derived Streptomyces sp. strain P8-A2. The cis-alkenyl unit in 1-3 was found to readily isomerize to the trans-congeners (4-6). The structures of the new compounds were determined by detailed spectroscopic (1D/2D NMR) and HRMS data analysis. Azodyrecins belong to a new class of natural azoxy compounds and are proposed to derive from l-alanine and alkylamines. The absolute configurations of 1-6 were defined by comparison of ECD spectra. While no antimicrobial effects were observed for 1 against Staphylococcus aureus, Vibrio anguillarum, or Candida albicans, azodyrecin B (2) exhibited cytotoxicity against the human leukemia cell line HL-60 with an IC50 value of 2.2 μM.
Collapse
Affiliation(s)
- Mario Wibowo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, DK-2800 Kongens Lyngby, Denmark
| | - Charlotte H Gotfredsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kongens Lyngby, Denmark
| | - Elisa Sassetti
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kongens Lyngby, Denmark
| | - Jette Melchiorsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, DK-2800 Kongens Lyngby, Denmark
| | - Mads Hartvig Clausen
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kongens Lyngby, Denmark
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, DK-2800 Kongens Lyngby, Denmark
| | - Ling Ding
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
7
|
Wibowo M, Ding L. Chemistry and Biology of Natural Azoxy Compounds. JOURNAL OF NATURAL PRODUCTS 2020; 83:3482-3491. [PMID: 33197183 DOI: 10.1021/acs.jnatprod.0c00725] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Azoxy compounds belong to a small yet intriguing group of natural products sharing a common functional group with the general structure RN═N+(O-)R. Their intriguing chemical structures, diverse biological activities, and important industrial applications have received attention from researchers in natural product chemistry, total synthesis, and biosynthesis. This review presents current updates about the structural diversity of natural azoxy compounds isolated from different organisms and highlights the enzymes and biological logic involved in their construction. We assume that the identification of key enzymes will provide efficient tools in biocatalysis to generate new azoxy compounds, while genome mining may result in novel natural azoxy compounds of medical and industrial interest.
Collapse
Affiliation(s)
- Mario Wibowo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark
| | - Ling Ding
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
8
|
Chen J, Li QX, Song B. Chemical Nematicides: Recent Research Progress and Outlook. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12175-12188. [PMID: 33079521 DOI: 10.1021/acs.jafc.0c02871] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Plant-parasitic nematodes have caused huge economic losses to agriculture worldwide and seriously threaten the sustainable development of modern agriculture. Chemical nematicides are still the most effective means to manage nematodes. However, the long-term use of organophosphorus and carbamate nematicides has led to a lack of field control efficacy and increased nematode resistance. To meet the huge market demand and slow the growth of resistance, new nematicides are needed to enter the market. The rational design and synthesis of new chemical scaffolds to screen for new nematicides is still a difficult task. We reviewed the latest research progress of nematicidal compounds in the past decade, discussed the structure-activity relationship and mechanism of action, and recommended some nematicidal active fragments. It is hoped that this review can update the recent progress on nematicide discoveries and provide new ideas for the design and mechanism of action studies of nematicides.
Collapse
Affiliation(s)
- Jixiang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
9
|
Watanabe M, Sugawara A, Noguchi Y, Hirose T, Ōmura S, Sunazuka T, Horie R. Jietacins, azoxy natural products, as novel NF-κB inhibitors: Discovery, synthesis, biological activity, and mode of action. Eur J Med Chem 2019; 178:636-647. [PMID: 31226655 DOI: 10.1016/j.ejmech.2019.05.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/18/2022]
Abstract
Deregulation of NF-κB plays an important role in various diseases by controlling cell growth, inflammation, the immune response, and cytokine production. Although many NF-κB inhibitors have been developed, to the best of our knowledge, none of them have been successfully translated into clinical practice as medicines. To overcome this issue, we aimed to develop a new class of NF-κB inhibitors. Previous reports indicated that the N-terminal cysteine is a promising target for NF-κB. Based on this, we first selected 10 natural products or their derivatives from the natural product library that we developed and examined the effect on NF-κB and the viability of cancer cells with constitutively strong NF-κB activity. Among them, we found that an azoxy natural product, jietacin A, with a vinylazoxy group and an aliphatic side chain, reduced cell viability and inhibited nuclear translocation of free NF-κB. In addition, we performed design, synthesis, and biological evaluation of jietacin derivatives for development of a novel NF-κB inhibitor. Of these derivatives, a fully synthesized derivative 25 with vinylazoxy and ynone groups had a potent effect. We clarified the structure-activity relationship of this compound. Jietacin A and 25 also inhibited tumor necrosis factor-α-mediated induction of NF-κB. The NF-κB inhibitory effect depended on the N-terminal cysteine and the neighboring Arg-Ser-Ala-Gly-Ser-Ile (RSAGSI) domain of NF-κB. We also found that 25 inhibited the association between NF-κB and importin α, suggesting inhibition of NF-κB at an early step of nuclear translocation. Overall, this study indicated that the vinylazoxy motif may compose a new class of NF-κB inhibitors, providing further insight for rational drug design and rendering a unique mode of action.
Collapse
Affiliation(s)
- Mariko Watanabe
- Division of Hematology, Department of Laboratory Sciences, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan; Department of Molecular Hematology, Faculty of Molecular Medical Biology, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Akihiro Sugawara
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yoshihiko Noguchi
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Tomoyasu Hirose
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Satoshi Ōmura
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Toshiaki Sunazuka
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Ryouichi Horie
- Division of Hematology, Department of Laboratory Sciences, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan; Department of Molecular Hematology, Faculty of Molecular Medical Biology, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan.
| |
Collapse
|
10
|
Carmona JA, Gonzalo GD, Serrano I, Crespo-Peña AM, Šimek M, Monge D, Fernández R, Lassaletta JM. Asymmetric organocatalytic synthesis of tertiary azomethyl alcohols: key intermediates towards azoxy compounds and α-hydroxy-β-amino esters. Org Biomol Chem 2018; 15:2993-3005. [PMID: 28294261 DOI: 10.1039/c7ob00308k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of peracylated glycosamine-derived thioureas have been synthesized and their behavior as bifunctional organocatalysts has been tested in the enantioselective nucleophilic addition of formaldehyde tert-butyl hydrazone to aliphatic α-keto esters for the synthesis of tertiary azomethyl alcohols. Using the 1,3,4,6-tetra-O-acetyl-2-amino-2-deoxy-β-d-glucosamine derived 3,5-bis-(trifluoromethyl)phenyl thiourea the reaction could be accomplished with high yields (75-98%) and moderate enantioselectivities (50-64% ee). Subsequent high-yielding and racemization-free tranformations of both aromatic- and aliphatic-substituted diazene products in a one pot fashion provide a direct entry to valuable azoxy compounds and α-hydroxy-β-amino esters.
Collapse
Affiliation(s)
- José A Carmona
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain.
| | - Gonzalo de Gonzalo
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/ Prof. García González, 1, 41012 Sevilla, Spain.
| | - Inmaculada Serrano
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/ Prof. García González, 1, 41012 Sevilla, Spain.
| | - Ana M Crespo-Peña
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain.
| | - Michal Šimek
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain.
| | - David Monge
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/ Prof. García González, 1, 41012 Sevilla, Spain.
| | - Rosario Fernández
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/ Prof. García González, 1, 41012 Sevilla, Spain.
| | - José M Lassaletta
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain.
| |
Collapse
|
11
|
Sugawara A, Kubo M, Hirose T, Yahagi K, Tsunoda N, Noguchi Y, Nakashima T, Takahashi Y, Welz C, Mueller D, Mertens C, Koebberling J, Ōmura S, Sunazuka T. Jietacins, azoxy antibiotics with potent nematocidal activity: Design, synthesis, and biological evaluation against parasitic nematodes. Eur J Med Chem 2017; 145:524-538. [PMID: 29335213 DOI: 10.1016/j.ejmech.2017.12.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/25/2017] [Accepted: 12/09/2017] [Indexed: 01/07/2023]
Abstract
Jietacins, an azoxy antibiotic class of chemicals, were isolated from the culture broth of Streptomyces sp. KP-197. They have a unique structural motif, including a vinyl azoxy group and a long acyclic aliphatic chain, which is usually branched but non-branched in the case of jietacin C. During a drug discovery program, we found that jietacins display potent anthelmintic activity against parasitic nematodes and that jietacin A has a moderate or low acute toxicity (LD50 > 300 mg/kg) and no mutagenic potential in a mini Ames screen. This suggests that jietacins have potential for drug discovery research. In order to create a novel anthelmintic agent, we performed design, synthesis, and biological evaluation of jietacin derivatives against parasitic nematodes. Of these derivatives, we found that a fully synthesized simplified derivative exhibited better anthelmintic activity against three parasitic nematodes than natural jietacins. In addition, it had a better efficacy in vivo through oral administration against a mouse nematode. This indicated that the azoxy motif could prove useful as a template for anthelmintic discovery, possibly creating a class of anthelmintic with novel skeletons, a potential new mode of action, and providing further insight for rational drug design.
Collapse
Affiliation(s)
- Akihiro Sugawara
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan; Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aza-Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan.
| | - Masahiko Kubo
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| | - Tomoyasu Hirose
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| | - Kyoichi Yahagi
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| | - Noriaki Tsunoda
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| | - Yoshihiko Noguchi
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| | - Takuji Nakashima
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| | - Yoko Takahashi
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| | - Claudia Welz
- Bayer AG Drug Discovery Pharmaceuticals, Wuppertal, Berlin, Germany.
| | - Dennis Mueller
- Bayer AG Drug Discovery Pharmaceuticals, Wuppertal, Berlin, Germany.
| | | | | | - Satoshi Ōmura
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| | - Toshiaki Sunazuka
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
12
|
|
13
|
Dembitsky VM, Gloriozova TA, Poroikov VV. Pharmacological and Predicted Activities of Natural Azo Compounds. NATURAL PRODUCTS AND BIOPROSPECTING 2017; 7:151-169. [PMID: 28054247 PMCID: PMC5315673 DOI: 10.1007/s13659-016-0117-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/26/2016] [Indexed: 05/16/2023]
Abstract
This paper describes research on natural azo compounds isolated from fungi, plant, bacteria, and invertebrates. More than 120 biologically active diazene containing alkaloids demonstrate confirmed pharmacological activity, including antitumor, antimicrobial, and antibacterial effects. The structures, origin, and biological activities of azo compounds are reviewed. Utilizing the computer program PASS, some structure-activity relationship new activities are also predicted, pointing toward possible new applications of these compounds. This article emphasizes the role of natural azo compounds as an important source of drug prototypes and leads for drug discovery.
Collapse
Affiliation(s)
- Valery M Dembitsky
- National Scientific Center of Marine Biology, 17 Palchevsky Str., Vladivostok, Russia, 690041.
| | | | | |
Collapse
|
14
|
Yamada T, Ideguchi-Matsushita T, Hirose T, Shirahata T, Hokari R, Ishiyama A, Iwatsuki M, Sugawara A, Kobayashi Y, Otoguro K, Ōmura S, Sunazuka T. Asymmetric Total Synthesis of Indole Alkaloids Containing an Indoline Spiroaminal Framework. Chemistry 2015; 21:11855-64. [DOI: 10.1002/chem.201501150] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Indexed: 11/09/2022]
|