1
|
Zhao G, Li W, Zhang J. Recent Advances in Palladium-Catalyzed Asymmetric Heck/Tsuji-Trost Reactions of 1,n-Dienes. Chemistry 2024; 30:e202400076. [PMID: 38349344 DOI: 10.1002/chem.202400076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Indexed: 03/01/2024]
Abstract
Transition-metal catalyzed tandem asymmetric reactions were powerful tools to access various chiral compounds. Many strategies have been developed for the coupling of 1,n-dienes with aryl halides via a tandem Heck/Tsuji-Trost process. However, the control of regio- and stereo-chemistry remains a challenging task. This minireview details the recent advances in the field of asymmetric Heck/Tsuji-Trost reactions catalyzed by palladium complex, which have opened new opportunities and expanded our understanding in this area of research in recent years.
Collapse
Affiliation(s)
- Guofeng Zhao
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, 471023, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Wenbo Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Junliang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| |
Collapse
|
2
|
Fukuyama Y, Kubo M, Harada K. Neurotrophic Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 123:1-473. [PMID: 38340248 DOI: 10.1007/978-3-031-42422-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.
Collapse
Affiliation(s)
- Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
3
|
Fukuyama Y. [Synthetic Studies on Small Molecule Natural Products with Neurotrophic Activity]. YAKUGAKU ZASSHI 2022; 142:241-277. [PMID: 35228379 DOI: 10.1248/yakushi.21-00201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neurotrophic factors have been shown to potentially be beneficial for the treatment of neurodegenerative diseases such as Alzheimer's disease, because endogenous neurotrophic factors (NGF, BDNF) have been recognized to play critical roles in the promotion of neurogenesis, differentiation, and neuroprotection throughout the development of the central nervous system. However, high-molecular-weight proteins are unable to cross the blood-brain barrier and are easily decomposed under physiological conditions. Thus, small molecules that can mimic the functions of neurotrophic factors are promising alternatives for the treatment of neurodegenerative disease. Since 1990, the author has been involved in searching for natural products with typical neurotrophic properties that can cause neurogenesis, enhance neurite outgrowth, and protect against neuronal death by using three cellular systems (PC12, rat cortical neurons, and MEB5 cells). Through these research activities on neurotrophic natural products, the author has tried to induce a paradigm shift from the discipline of natural products chemistry to science disciplines. This review focuses on our independent synthetic studies of the neurotrophic natural products discovered in the plants. The following synthetic elaborations are described: syntheses of dimeric isocuparane-type sesquiterpenes mastigophorenes A and B, macrocyclic bis-bibenzyls plagiochins A-D and cavicularin through a Pd-catalyzed Stille-Kelly reaction; the formal synthesis of merrilactone A and jiadifenin, which are seco-prezizaane-type sesquiterpenes, through intramolecular Pd-catalyzed Mizoroki-Heck and Tsuji-Trost reactions; and finally the first enantioselective synthesis of neovibsanin B, a vibsane-type diterpene, through a Pd-catalyzed cyclic carbopalladation-carbonyl tandem reaction.
Collapse
|
4
|
Paul D, Das S, Saha S, Sharma H, Goswami RK. Intramolecular Heck Reaction in Total Synthesis of Natural Products: An Update. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100071] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Debobrata Paul
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata 700032 India
| | - Subhendu Das
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata 700032 India
| | - Sanu Saha
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata 700032 India
| | - Himangshu Sharma
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata 700032 India
| | - Rajib Kumar Goswami
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata 700032 India
| |
Collapse
|
5
|
Fukuyama Y, Kubo M, Harada K. The search for, and chemistry and mechanism of, neurotrophic natural products. J Nat Med 2020; 74:648-671. [PMID: 32643028 PMCID: PMC7456418 DOI: 10.1007/s11418-020-01431-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 06/28/2020] [Indexed: 12/13/2022]
Abstract
Abstract Neurotrophic factors, now termed neurotrophins, which belong to a class of polypeptidyl agents, have been shown to potentially be beneficial for the treatment of neurodegenerative diseases such as Alzheimer’s disease, because endogenous neurotrophic factors (NGF, BDNF, NT3, NT4) have been recognized to play critical roles in the promotion of neurogenesis, differentiation, and neuroprotection throughout the development of the central nervous system. However, high-molecular weight proteins are unable to cross the blood–brain barrier and are easily decomposed by peptidase under physiological conditions. To address this issue, small molecules that can mimic the functions of neurotrophic factors would be promising alternatives for the treatment of neurodegenerative disease. We have continued to search for natural products having typical neurotrophic properties, which can cause neurogenesis, enhance neurite outgrowth, and protect neuronal death using three cellular systems (PC12, rat cortical neurons, and MEB5 cells). In this review, we summarize the neurotrophic activities and synthesis of dimeric isocuparane-type sesquiterpenes from the liverwort, Mastigophora diclados, the mechanism of neurotrophic neolignans, magnolol, honokiol and their sesquiterpene derivatives, and introduce unique neurotrophin-mimic natural products, including seco-prezizaane-type sesquiterpenes from the Illicium species, vibsane-type diterpenes from Viburnum awabuki, and miscellaneous natural products with neurotrophic effects discovered by us. Graphic abstract ![]()
Collapse
Affiliation(s)
- Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
6
|
Noreen S, Zahoor AF, Ahmad S, Shahzadi I, Irfan A, Faiz S. Novel Chiral Ligands for Palladium-catalyzed Asymmetric Allylic Alkylation/ Asymmetric Tsuji-Trost Reaction: A Review. CURR ORG CHEM 2019; 23:1168-1213. [DOI: 10.2174/1385272823666190624145039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/26/2022]
Abstract
Background:
Asymmetric catalysis holds a prestigious role in organic syntheses since a long
time and chiral inductors such as ligands have been used to achieve the utmost desired results
at this pitch. The asymmetric version of Tsuji-Trost allylation has played a crucial
role in enantioselective synthesis. Various chiral ligands have been known for Pdcatalyzed
Asymmetric Allylic Alkylation (AAA) reactions and exhibited excellent catalytic
potential. The use of chiral ligands as asymmetric inductors has widened the scope of
Tsuji-Trost allylic alkylation reactions.
Conclusion:
Therefore, in this review article, a variety of chiral inductors or ligands have been focused
for palladium catalyzed asymmetric allylic alkylation (Tsuji-Trost allylation) and in this
regard, recently reported literature (2013-2017) has been described. The use of ligands
causes the induction of enantiodiscrimination to the allylated products, therefore, the syntheses of various kinds
of ligands have been targeted by many research groups to employ in Pd-catalyzed AAA reactions.
Collapse
Affiliation(s)
- Samar Noreen
- Department of Chemistry, Government College University Faisalabad, Faisalabad-38000, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad-38000, Pakistan
| | - Sajjad Ahmad
- Department of Chemistry, University of Engineering and Technology Lahore, Faisalabad Campus, Faisalabad-38000, Pakistan
| | - Irum Shahzadi
- Department of Chemistry, Government College University Faisalabad, Faisalabad-38000, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad-38000, Pakistan
| | - Sadia Faiz
- Department of Chemistry, Government College University Faisalabad, Faisalabad-38000, Pakistan
| |
Collapse
|
7
|
Hung K, Condakes ML, Novaes LFT, Harwood SJ, Morikawa T, Yang Z, Maimone TJ. Development of a Terpene Feedstock-Based Oxidative Synthetic Approach to the Illicium Sesquiterpenes. J Am Chem Soc 2019; 141:3083-3099. [PMID: 30698435 DOI: 10.1021/jacs.8b12247] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Illicium sesquiterpenes are a family of natural products containing over 100 highly oxidized and structurally complex members, many of which display interesting biological activities. This comprehensive account chronicles the evolution of a semisynthetic strategy toward these molecules from (+)-cedrol, seeking to emulate key aspects of their presumed biosynthesis. An initial route generated lower oxidation state analogs but failed in delivering a crucial hydroxy group in the final step. Insight gathered during these studies, however, ultimately led to a synthesis of the pseudoanisatinoids along with the allo-cedrane natural product 11- O-debenzoyltashironin. A second-generation strategy was then developed to access the more highly oxidized majucinoid compounds including jiadifenolide and majucin itself. Overall, one dozen natural products can be accessed from an abundant and inexpensive terpene feedstock. A multitude of general observations regarding site-selective C(sp3)-H bond functionalization reactions in complex polycyclic architectures are reported.
Collapse
Affiliation(s)
- Kevin Hung
- Department of Chemistry , University of California, Berkeley , 826 Latimer Hall , Berkeley , California 94720 , United States
| | - Matthew L Condakes
- Department of Chemistry , University of California, Berkeley , 826 Latimer Hall , Berkeley , California 94720 , United States
| | - Luiz F T Novaes
- Department of Chemistry , University of California, Berkeley , 826 Latimer Hall , Berkeley , California 94720 , United States
| | - Stephen J Harwood
- Department of Chemistry , University of California, Berkeley , 826 Latimer Hall , Berkeley , California 94720 , United States
| | - Takahiro Morikawa
- Department of Chemistry , University of California, Berkeley , 826 Latimer Hall , Berkeley , California 94720 , United States
| | - Zhi Yang
- Department of Chemistry , University of California, Berkeley , 826 Latimer Hall , Berkeley , California 94720 , United States
| | - Thomas J Maimone
- Department of Chemistry , University of California, Berkeley , 826 Latimer Hall , Berkeley , California 94720 , United States
| |
Collapse
|
8
|
Condakes ML, Novaes LFT, Maimone TJ. Contemporary Synthetic Strategies toward seco-Prezizaane Sesquiterpenes from Illicium Species. J Org Chem 2018; 83:14843-14852. [PMID: 30525614 PMCID: PMC6467809 DOI: 10.1021/acs.joc.8b02802] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Since the elucidation of the structure of anisatin in the late 1960s, sesquiterpene lactones from various Illicium species of plants have captivated synthetic chemists worldwide, resulting in a large body of synthetic work. In particular, Illicium sesquiterpenes containing the seco-prezizaane carbon framework have seen immense interest in recent years owing to desirable structural and medicinal attributes. This synopsis will focus on recently developed synthetic strategies to access these compact, highly oxidized terpenoids.
Collapse
Affiliation(s)
- Matthew L. Condakes
- Department of Chemistry, University of California–Berkeley, Berkeley, CA, 94720
| | - Luiz F. T. Novaes
- Department of Chemistry, University of California–Berkeley, Berkeley, CA, 94720
| | - Thomas J. Maimone
- Department of Chemistry, University of California–Berkeley, Berkeley, CA, 94720
| |
Collapse
|
9
|
Fahimi N, Sardarian AR. Aminoclay decorated with nano-Pd(0) picolinic acid complex as a novel efficient, heterogeneous, and phosphine ligand-free catalyst in Heck reaction under solvent-free conditions. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-2921-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Gomes J, Daeppen C, Liffert R, Roesslein J, Kaufmann E, Heikinheimo A, Neuburger M, Gademann K. Formal Total Synthesis of (-)-Jiadifenolide and Synthetic Studies toward seco-Prezizaane-Type Sesquiterpenes. J Org Chem 2016; 81:11017-11034. [PMID: 27740748 DOI: 10.1021/acs.joc.6b02039] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Synthetic studies toward highly oxygenated seco-prezizaane sesquiterpenes are reported, which culminated in a formal total synthesis of the neurotrophic agent (-)-jiadifenolide. For the construction of the tricyclic core structure, an unusual intramolecular and diastereoselective Nozaki-Hiyama-Kishi reaction involving a ketone as electrophilic coupling partner was developed. In addition, synthetic approaches toward the related natural product (2R)-hydroxy-norneomajucin, featuring a Mn-mediated radical cyclization for the tricycle assembly and a regioselective OH-directed C-H activation are presented.
Collapse
Affiliation(s)
- José Gomes
- Department of Chemistry, University of Basel , St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Christophe Daeppen
- Department of Chemistry, University of Basel , St. Johanns-Ring 19, CH-4056 Basel, Switzerland.,Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Raphael Liffert
- Department of Chemistry, University of Basel , St. Johanns-Ring 19, CH-4056 Basel, Switzerland.,Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Joel Roesslein
- Department of Chemistry, University of Basel , St. Johanns-Ring 19, CH-4056 Basel, Switzerland.,Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Elias Kaufmann
- Department of Chemistry, University of Basel , St. Johanns-Ring 19, CH-4056 Basel, Switzerland.,Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Annakaisa Heikinheimo
- Department of Chemistry, University of Basel , St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Markus Neuburger
- Department of Chemistry, University of Basel , St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Karl Gademann
- Department of Chemistry, University of Basel , St. Johanns-Ring 19, CH-4056 Basel, Switzerland.,Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
11
|
Shibuya M, Sudoh T, Kawamura T, Yamamoto Y. A lactone-fused cyclohexadiene as a versatile platform for diversified synthesis of 5,6,5-tricyclic scaffolds. Org Biomol Chem 2015; 13:5862-6. [DOI: 10.1039/c5ob00729a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new lactone-fused cyclohexadiene platform for the stereoselective synthesis of differently functionalized 5,6,5-tricyclic scaffolds.
Collapse
Affiliation(s)
- M. Shibuya
- Department of Basic Medicinal Sciences
- Graduate School of Pharmaceutical Sciences
- Nagoya University
- Chikusa
- Japan
| | - T. Sudoh
- Department of Basic Medicinal Sciences
- Graduate School of Pharmaceutical Sciences
- Nagoya University
- Chikusa
- Japan
| | - T. Kawamura
- Department of Basic Medicinal Sciences
- Graduate School of Pharmaceutical Sciences
- Nagoya University
- Chikusa
- Japan
| | - Y. Yamamoto
- Department of Basic Medicinal Sciences
- Graduate School of Pharmaceutical Sciences
- Nagoya University
- Chikusa
- Japan
| |
Collapse
|