1
|
Yan MP, Wee CE, Yen KP, Stevens A, Wai LK. G-quadruplex ligands as therapeutic agents against cancer, neurological disorders and viral infections. Future Med Chem 2023; 15:1987-2009. [PMID: 37933551 DOI: 10.4155/fmc-2023-0202] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
G-quadruplexes (G4s) within the human genome have undergone extensive molecular investigation, with a strong focus on telomeres, gene promoters and repetitive regulatory sequences. G4s play central roles in regulating essential biological processes, including telomere maintenance, replication, transcription and translation. Targeting these molecular processes with G4-binding ligands holds substantial therapeutic potential in anticancer treatments and has also shown promise in treating neurological, skeletal and muscular disorders. The presence of G4s in bacterial and viral genomes also suggests that G4-binding ligands could be a critical tool in fighting infections. This review provides an overview of the progress and applications of G4-binding ligands, their proposed mechanisms of action, challenges faced and prospects for their utilization in anticancer treatments, neurological disorders and antiviral activities.
Collapse
Affiliation(s)
- Mock Phooi Yan
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Chua Eng Wee
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Khor Poh Yen
- Faculty Pharmacy & Health Sciences, Universiti Kuala Lumpur, Royal College of Medicine Perak, 3, Jalan Greentown, Ipoh, Perak, 30450, Malaysia
| | - Aaron Stevens
- Department of Pathology & Molecular Medicine, University of Otago, Wellington, 6021, New Zealand
| | - Lam Kok Wai
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| |
Collapse
|
2
|
Di Fonzo S, Amato J, D'Aria F, Caterino M, D'Amico F, Gessini A, Brady JW, Cesàro A, Pagano B, Giancola C. Ligand binding to G-quadruplex DNA: new insights from ultraviolet resonance Raman spectroscopy. Phys Chem Chem Phys 2020; 22:8128-8140. [PMID: 32246758 DOI: 10.1039/d0cp01022g] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
G-Quadruplexes (G4s) are noncanonical nucleic acid structures involved in the regulation of several biological processes of many organisms. The rational design of G4-targeting molecules developed as potential anticancer and antiviral therapeutics is a complex problem intrinsically due to the structural polymorphism of these peculiar DNA structures. The aim of the present work is to show how Ultraviolet Resonance Raman (UVRR) spectroscopy can complement other techniques in providing valuable information about ligand/G4 interactions in solution. Here, the binding of BRACO-19 and Pyridostatin - two of the most potent ligands - to selected biologically relevant G4s was investigated by polarized UVRR scattering at 266 nm. The results give new insights into the binding mode of these ligands to G4s having different sequences and topologies by performing an accurate analysis of peaks assigned to specific groups and their changes upon binding. Indeed, the UVRR data not only show that BRACO-19 and Pyridostatin interact with different G4 sites, but also shed light on the ligand and G4 chemical groups really involved in the interaction. In addition, UVRR results complemented by circular dichroism data clearly indicate that the binding mode of a ligand can also depend on the conformation(s) of the target G4. Overall, these findings demonstrate the utility of using UVRR spectroscopy in the investigation of G4s and G4-ligand interactions in solution.
Collapse
Affiliation(s)
- Silvia Di Fonzo
- Elettra-Sincrotrone Trieste S. C. p. A., Science Park, Trieste, I-34149, Italy.
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| | - Federica D'Aria
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| | - Marco Caterino
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| | - Francesco D'Amico
- Elettra-Sincrotrone Trieste S. C. p. A., Science Park, Trieste, I-34149, Italy.
| | - Alessandro Gessini
- Elettra-Sincrotrone Trieste S. C. p. A., Science Park, Trieste, I-34149, Italy.
| | - John W Brady
- Department of Food Science, Cornell University, Ithaca, New York, NY 14853, USA
| | - Attilio Cesàro
- Elettra-Sincrotrone Trieste S. C. p. A., Science Park, Trieste, I-34149, Italy. and Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, I-34127, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| | - Concetta Giancola
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| |
Collapse
|
3
|
Ma TZ, Zhang MJ, Liao TC, Li JH, Zou M, Wang ZM, Zhou CQ. Dimers formed with the mixed-type G-quadruplex binder pyridostatin specifically recognize human telomere G-quadruplex dimers. Org Biomol Chem 2020; 18:920-930. [DOI: 10.1039/c9ob02470k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
By adjusting the length of the polyether linkers, pyridostatin (PDS) dimers displayed higher binding selectivities and thermal stabilization towards human telomere antiparallel and mixed-type G-quadruplex dimers (G2T1).
Collapse
Affiliation(s)
- Tian-Zhu Ma
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Meng-Jia Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Ting-Cong Liao
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Jun-Hui Li
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Min Zou
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Zhou-Mo Wang
- Medical School
- Science and Technology College of Hubei University for Nationalities
- Enshi 445000
- P. R. China
| | - Chun-Qiong Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| |
Collapse
|
4
|
Yang F, Sun X, Wang L, Li Q, Guan A, Shen G, Tang Y. Selective recognition of c-myc promoter G-quadruplex and down-regulation of oncogene c-myc transcription in human cancer cells by 3,8a-disubstituted indolizinone. RSC Adv 2017. [DOI: 10.1039/c7ra09870g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Indolizinone could selectively recognize c-myc promoter G-quadruplex.
Collapse
Affiliation(s)
- Fengmin Yang
- National Laboratory for Molecular Sciences
- Center for Molecular Sciences
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry Chinese Academy of Sciences
- Beijing
| | - Xin Sun
- National Laboratory for Molecular Sciences
- Center for Molecular Sciences
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry Chinese Academy of Sciences
- Beijing
| | - Lixia Wang
- National Laboratory for Molecular Sciences
- Center for Molecular Sciences
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry Chinese Academy of Sciences
- Beijing
| | - Qian Li
- National Laboratory for Molecular Sciences
- Center for Molecular Sciences
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry Chinese Academy of Sciences
- Beijing
| | - Aijiao Guan
- National Laboratory for Molecular Sciences
- Center for Molecular Sciences
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry Chinese Academy of Sciences
- Beijing
| | - Gang Shen
- National Laboratory for Molecular Sciences
- Center for Molecular Sciences
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry Chinese Academy of Sciences
- Beijing
| | - Yalin Tang
- National Laboratory for Molecular Sciences
- Center for Molecular Sciences
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry Chinese Academy of Sciences
- Beijing
| |
Collapse
|
5
|
Jamroskovic J, Livendahl M, Eriksson J, Chorell E, Sabouri N. Identification of Compounds that Selectively Stabilize Specific G-Quadruplex Structures by Using a Thioflavin T-Displacement Assay as a Tool. Chemistry 2016; 22:18932-18943. [DOI: 10.1002/chem.201603463] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Jan Jamroskovic
- Department of Medical Biochemistry and Biophysics; Umeå University; Umeå 901 87 Sweden
| | | | - Jonas Eriksson
- Laboratories for Chemical Biology Umeå; Chemical Biology Consortium Sweden; Department of Chemistry; Umeå University; Umeå 901 87 Sweden
| | - Erik Chorell
- Department of Chemistry; Umeå University; Umeå 901 87 Sweden
| | - Nasim Sabouri
- Department of Medical Biochemistry and Biophysics; Umeå University; Umeå 901 87 Sweden
| |
Collapse
|