1
|
Suganthirani K, Thiruppathiraja T, Lakshmipathi S, Malecki JG, Murugesapandian B. Aminothiophenol and 7-diethylamino-4-hydroxycoumarin derived probe for reversible turn off-on-off detection of Cu 2+ ions and cysteine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125315. [PMID: 39515231 DOI: 10.1016/j.saa.2024.125315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/03/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Here, we present a simple disulfide linked probe HTP for rapid detection of Cu2+ ions, which was prepared by a condensation reaction between 7-diethylamino-4-hydroxycoumarin aldehyde and 2-aminothiophenol. The disulfide linked probe HTP was characterized using 1H NMR, 13C NMR, and HRMS spectroscopic analysis and confirmed by single crystal X-ray diffraction analysis. The photophysical behavior of HTP in various solvents (non-polar to polar) was studied and HTP displayed aggregation induced emission (AIE) characteristics in CH3CN-water mixtures (0-99 %). Upon binding with Cu2+ ions, emission enhancement occurs along with color changes from weak green to intense yellow emission in CH3CN/Tris-HCl buffer (20 μM, 9:1, 10 mM Tris HCl Buffer, pH = 7.4). Detection limit for Cu2+ ions was found to be 0.97 nM which is lower than the recommended tolerance limit by the WHO and the association constant 0.42 × 108 M-1 was obtained using B-H plot. Furthermore, the stoichiometric ratio 1:1 was confirmed by Job's plot, 1H NMR, mass spectral analysis and DFT calculations were supported the formation of HTP-Cu2+ complex. The reversibility of HTP with Cu2+ ions was achieved by cysteine with detection limit and association constant value of 1.64 µM and 0.15 × 107 M-1 respectively. The reversible sensing nature of HTP with Cu2+/cysteine was further applied for constructing a molecular logic gate (INHIBIT) and practical applications such as paper strips, cotton swabs and real water analysis.
Collapse
Affiliation(s)
| | | | | | - Jan Grzegorz Malecki
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | | |
Collapse
|
2
|
Ghosh R, Pradhan D, Debnath S, Mansingh A, Nagesh N, Chatterjee PB. A Hydrogen Bonded Non-Porous Organic-Inorganic Framework for Measuring Cysteine in Blood Plasma and Endogenous Cancer Cell. Chemistry 2024; 30:e202401255. [PMID: 39162779 DOI: 10.1002/chem.202401255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Indexed: 08/21/2024]
Abstract
An imbalance in cysteine (Cys) levels in the cells and plasma has been identified as the risk indicator for various human diseases. The structural similarity of cysteine with its congener homocysteine and glutathione offers challenges in its measurement. Herein, we report a hydrogen-bonded organic-inorganic framework of Cu(II) (HOIF) for the selective detection of cysteine over other biothiols. The non-fluorescent HOIF showed 12-fold green emission in the presence of cysteine. The monomeric unit of HOIF is stabilized via intermolecular hydrogen bonds, resulting in a non-porous network structure. Non-interference from homocysteine, glutathione, and other competitive bio-analytes revealed explicit affinity of HOIF for cysteine. Fluorimetric titration showed a wide working concentration window (650 nM-800 μM) for measuring cysteine in an aqueous medium. The mechanistic investigation involving HRMS, EPR, and UV-vis spectroscopic studies revealed the decomplexation of HOIF with Cys, resulting in a fluorescence turn-on response from the luminescent ligand. Validation using a commercial dye, "Cysteine Green", confirmed the prospect of HOIF for early diagnostic purposes. Utilizing the fluorescence turn-on property of HOIF in the presence of cysteine, we measured cysteine quantitatively in the blood plasma samples. Bio-imaging of endogenous cysteine in cancer cells indicated the ability of HOIF to monitor the intracellular cysteine.
Collapse
Affiliation(s)
- Riya Ghosh
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Debjani Pradhan
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Snehasish Debnath
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Arushi Mansingh
- Medical Biotechnology Complex, CSIR-CCMB, ANNEXE II, Hyderabad, India
| | - Narayana Nagesh
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
- Medical Biotechnology Complex, CSIR-CCMB, ANNEXE II, Hyderabad, India
| | - Pabitra B Chatterjee
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| |
Collapse
|
3
|
Kavitha V, Viswanathamurthi P, Haribabu J, Echeverria C. An aqueous mediated ultrasensitive facile probe incorporated with acrylate moiety to monitor cysteine in food samples and live cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122447. [PMID: 36764167 DOI: 10.1016/j.saa.2023.122447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
A colorimetric probe TQA ((E)-4-(((8-(sec-butoxy)-2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-9-yl)methylene)amino)benzylacrylate) possessing greater potent towards the sensing of cysteine was successfully synthesized and characterized. The aqueous soluble probe TQA detects Cys based on "ON-OFF" effect with excellent absorbance and emission properties. The probe TQA detects Cys up to its ultra-low level concentration of 1.5 nM and also quantifies the Cys up to 5.05 nM with the quicker response time of 140 s (2.3 min). In addition, the color change produced by the probe TQA on integrated with Cys was also identified easily via paper strip, cotton wool buds and RGB color picker app in smart mobiles. Further, the admirable selectivity and sensitivity of the probe TQA towards Cys extends its utility towards food samples and imaging of live HeLa cells.
Collapse
Affiliation(s)
| | | | - Jebiti Haribabu
- Facultad de Medicina, Universidad de Atacama, Los Carreras 1579, 1532502 Copiapo, Chile
| | - Cesar Echeverria
- Facultad de Medicina, Universidad de Atacama, Los Carreras 1579, 1532502 Copiapo, Chile
| |
Collapse
|
4
|
Liu H, Ding S, Lu Q, Jian Y, Wei G, Yuan Z. a Versatile Schiff Base Chemosensor for the Determination of Trace Co 2+, Ni 2+, Cu 2+, and Zn 2+ in the Water and Its Bioimaging Applications. ACS OMEGA 2022; 7:7585-7594. [PMID: 35284732 PMCID: PMC8908528 DOI: 10.1021/acsomega.1c05960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
In this work, a simple and versatile Schiff base chemosensor (L) was developed for the detection of four adjacent row 4 metal ions (Co2+, Ni2+, Cu2+, and Zn2+) through colorimetric or fluorescent analyses. L could recognize the target ions in solutions containing a wide range of other cations and anions. The recognition mechanisms were verified with a Job's plot, HR-MS assays, and 1H NMR titration experiments. Then, L was employed to develop colorimetric test strips and TLC plates for Co2+. Meanwhile, L was capable of quantitatively measuring the amount of target ions in tap water and river water samples. Notably, L was used for imaging Zn2+ in HepG2 cells, zebrafish, and tumor-bearing mice, which demonstrated its potential biological applications. Therefore, L can probably serve as a versatile tool for the detection of the target metal ions in environmental and biological applications.
Collapse
Affiliation(s)
- Hongmei Liu
- Key
Laboratory of Basic Pharmacology of Ministry of Education and Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi, Guizhou Province 563000, China
- School
of Pharmacy, Zunyi Medical University, Zunyi, Guizhou Province 563000, China
- Guizhou
International Scientific and Technological Cooperation Base for Medical
Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou Province 563000, China
- Key
Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Zunyi, Guizhou Province 563000, China
- Generic
Drug Research Center of Guizhou Province, Zunyi, Guizhou Province 563000, China
| | - Shangli Ding
- Key
Laboratory of Basic Pharmacology of Ministry of Education and Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi, Guizhou Province 563000, China
- School
of Pharmacy, Zunyi Medical University, Zunyi, Guizhou Province 563000, China
- Guizhou
International Scientific and Technological Cooperation Base for Medical
Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou Province 563000, China
- Key
Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Zunyi, Guizhou Province 563000, China
- Generic
Drug Research Center of Guizhou Province, Zunyi, Guizhou Province 563000, China
| | - Quan Lu
- Key
Laboratory of Basic Pharmacology of Ministry of Education and Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi, Guizhou Province 563000, China
- School
of Pharmacy, Zunyi Medical University, Zunyi, Guizhou Province 563000, China
- Guizhou
International Scientific and Technological Cooperation Base for Medical
Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou Province 563000, China
- Key
Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Zunyi, Guizhou Province 563000, China
- Generic
Drug Research Center of Guizhou Province, Zunyi, Guizhou Province 563000, China
| | - Yue Jian
- Key
Laboratory of Basic Pharmacology of Ministry of Education and Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi, Guizhou Province 563000, China
- School
of Pharmacy, Zunyi Medical University, Zunyi, Guizhou Province 563000, China
- Guizhou
International Scientific and Technological Cooperation Base for Medical
Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou Province 563000, China
- Key
Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Zunyi, Guizhou Province 563000, China
- Generic
Drug Research Center of Guizhou Province, Zunyi, Guizhou Province 563000, China
| | - Gang Wei
- Commonwealth
Scientific and Industrial Research Organization Manufacturing, Lindfield, New South Wales 2070, Australia
| | - Zeli Yuan
- Key
Laboratory of Basic Pharmacology of Ministry of Education and Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi, Guizhou Province 563000, China
- School
of Pharmacy, Zunyi Medical University, Zunyi, Guizhou Province 563000, China
- Guizhou
International Scientific and Technological Cooperation Base for Medical
Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou Province 563000, China
- Key
Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Zunyi, Guizhou Province 563000, China
- Generic
Drug Research Center of Guizhou Province, Zunyi, Guizhou Province 563000, China
| |
Collapse
|
5
|
A Benzothiazole-Based Fluorescence Turn-on Sensor for Copper(II). J Fluoresc 2021; 31:1203-1209. [PMID: 34037894 DOI: 10.1007/s10895-021-02752-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
A new benzothiazole-based chemosensor BTN (1-((Z)-(((E)-3-methylbenzo[d]thiazol-2(3H)-ylidene)hydrazono)methyl)naphthalen-2-ol) was synthesized for the detection of Cu2+. BTN could detect Cu2+ with "off-on" fluorescent response from colorless to yellow irrespective of presence of other cations. Limit of detection for Cu2+ was determined to be 3.3 μM. Binding ratio of BTN and Cu2+ turned out to be a 1:1 with the analysis of Job plot and ESI-MS. Sensing feature of Cu2+ by BTN was explained with theoretical calculations, which might be owing to internal charge transfer and chelation-enhanced fluorescence processes.
Collapse
|
6
|
Yin C, Li J, Huo F. Cu2+ Biological Imaging Probes Based on Different Sensing Mechanisms. Curr Med Chem 2019; 26:3958-4002. [DOI: 10.2174/0929867324666170428110724] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 04/11/2017] [Accepted: 04/11/2017] [Indexed: 11/22/2022]
Abstract
In recent years, fluorescent probes have recently attracted attention from researchers.
As a vital trace metal element, Cu2+ has an important role in the human body and
environment. Therefore, the development and design of Cu2+ small-molecular fluorescent
probes has been an active research area. This review focuses on the developments in the area
of small-molecular fluorescent probes for Cu2+ in biological applications according to different
sensing mechanisms including charge transfer (CT), electron transfer, energy transfer,
excited-state intramolecular proton transfer (ESIPT).
Collapse
Affiliation(s)
- Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Jiawei Li and Caixia Yin, Shanxi University, Taiyuan, China
| | - Jiawei Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Jiawei Li and Caixia Yin, Shanxi University, Taiyuan, China
| | - Fangjun Huo
- Institute of Applied Chemistry, Fangjun Huo, Shanxi University, Taiyuan, China
| |
Collapse
|
7
|
A turn-off fluorescent chemosensor for Cu(II) based on sensitive schiff base derived from 4-tert-Butyl-2,6-diformylphenol and p-toluic hydrazide. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.111963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Okda HE, El Sayed S, Otri I, Ferreira RCM, Costa SP, Raposo MMM, Martínez-Máñez R, Sancenón F. 2,4,5-Triaryl imidazole probes for the selective chromo-fluorogenic detection of Cu(II). Prospective use of the Cu(II) complexes for the optical recognition of biothiols. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.05.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Varejão JOS, Varejão EVV, Fernandes SA. Synthesis and Derivatization of Julolidine: A Powerful Heterocyclic Structure. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900398] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jodieh Oliveira Santana Varejão
- Grupo de Química Supramolecular e Biomimética (GQSB); Departamento de Química; Universidade Federal de Viçosa; 36570-900 Brazil
| | - Eduardo Vinícius Vieira Varejão
- Grupo de Química Supramolecular e Biomimética (GQSB); Departamento de Química; Universidade Federal de Viçosa; 36570-900 Brazil
| | - Sergio Antonio Fernandes
- Grupo de Química Supramolecular e Biomimética (GQSB); Departamento de Química; Universidade Federal de Viçosa; 36570-900 Brazil
| |
Collapse
|
10
|
Gupta RC, Dwivedi SK, Razi SS, Singh P, Koch B, Misra A. A Chemodosimeter Exhibiting Fluorescence “Turn‐On” Response to Detect Copper(II) Ions: Cell Imaging and Logic Function. ChemistrySelect 2019. [DOI: 10.1002/slct.201900292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ramesh C. Gupta
- Department of ChemistryInstitute of ScienceBanaras Hindu University, Varanasi- 221005 Uttar Pradesh INDIA
| | - Sushil K. Dwivedi
- Department of ChemistryInstitute of ScienceBanaras Hindu University, Varanasi- 221005 Uttar Pradesh INDIA
| | - Syed S. Razi
- Department of ChemistryInstitute of ScienceBanaras Hindu University, Varanasi- 221005 Uttar Pradesh INDIA
| | - Priya Singh
- Department of ZoologyInstitute of ScienceBanaras Hindu University, Varanasi 221005, Uttar Pradesh INDIA
| | - Biplob Koch
- Department of ZoologyInstitute of ScienceBanaras Hindu University, Varanasi 221005, Uttar Pradesh INDIA
| | - Arvind Misra
- Department of ChemistryInstitute of ScienceBanaras Hindu University, Varanasi- 221005 Uttar Pradesh INDIA
| |
Collapse
|
11
|
Fang H, Huang PC, Wu FY. A novel jointly colorimetric and fluorescent sensor for Cu 2+ recognition and its complex for sensing S 2- by a Cu 2+ displacement approach in aqueous media. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 204:568-575. [PMID: 29975918 DOI: 10.1016/j.saa.2018.06.068] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/18/2018] [Indexed: 05/06/2023]
Abstract
In this work, a simple and easily synthesized Schiff-based derivative colorimetric and fluorescent sensor (1), 4-dimethylamino-benzoic acid (2-imidazole formaldehyde)-hydrazide, was obtained for the detection of Cu2+ and S2-. The compound 1 exhibited dual spectral responses to Cu2+, that is, vivid color change and fluorescence enhancement in the presence of Cu2+. The detection limits were valued as 0.46 μM and 15 nM according to absorption and fluorescent response, respectively. Both of them are below the World Health Organization (WHO) guidelines for drinking water (31.5 μM). In addition, the ensemble (1-Cu2+) selectively and sensitively detected a low concentration of S2-. As the addition of S2- instantly removed Cu2+ from the ensemble (1-Cu2+) resulting in a color change from yellow to colorless and a "turn-off" fluorescent response. The detection limit for S2- was estimated as 0.12 μM (from fluorescent method) and 0.68 μM (from absorption method), respectively, each of which was also lower than the maximum allowable level of S2- (15 μM) in drinking water defined by the WHO. The binding process was confirmed via UV-vis absorption, fluorescence measurements, 1H NMR, mass spectroscopy and density functional theory calculation. What's more, successful practical application of test paper is used to inspect the S2- which means the convenient and rapid assay in real samples can be achieved.
Collapse
Affiliation(s)
- Hao Fang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Peng-Cheng Huang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Fang-Ying Wu
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
12
|
Reactive Blue 4 as a Single Colorimetric Chemosensor for Sequential Determination of Multiple Analytes with Different Optical Responses in Aqueous Media: Cu 2+-Cysteine Using a Metal Ion Displacement and Cu 2+-Arginine Through the Host-Guest Interaction. Appl Biochem Biotechnol 2018; 187:913-937. [PMID: 30105545 DOI: 10.1007/s12010-018-2796-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/25/2018] [Indexed: 01/03/2023]
Abstract
In the current study, we reported a novel label-free and facile colorimetric approach for the sequential detection of copper ion (Cu2+), L-arginine (Arg), and L-cysteine (Cys) in the H2O (10.0 mmol L-1 HEPES buffer solution, pH 7.0) using Reactive Blue 4 (RB4). First, the presence of Cu2+ led to a naked-eye color and spectral changes according to the binding site-signaling subunit approach. Then, the RB4-Cu2+ complex was successfully applied for Cys and Arg through different recognition pathways. The optical signals for Arg were observed due to its association involving the amino group, as well as the participation of the carboxylate group in a bidentate form to the complex, while selective behavior for Cys was explained by a metal displacement mechanism. The limits of detection for Cu2+, Arg, and Cys were calculated to be 1.96, 1.06, and 1.33 μmol L-1, respectively. It could also be employed for the determination of three analytes in environmental, biological, and pharmaceutical samples. Importantly, the test strips based on RB4-Cu2+ complex could be used as a solid-state sensor for the detection of Cys and Arg. In addition, NAND and IMPLICATION molecular logic gates were obtained by using chemical inputs and UV-Vis absorbance signal as the output. Graphical Abstract.
Collapse
|
13
|
|
14
|
Shen Y, Zhang X, Zhang C, Zhang Y, Jin J, Li H. A simple fluorescent probe for the fast sequential detection of copper and biothiols based on a benzothiazole derivative. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 191:427-434. [PMID: 29073543 DOI: 10.1016/j.saa.2017.09.069] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
A simple benzothiazole fluorescent chemosensor was developed for the fast sequential detection of Cu2+ and biothiols through modulating the excited-state intramolecular proton transfer (ESIPT) process. The compound 1 exhibits highly selective and sensitive fluorescence "on-off" recognition to Cu2+ with a 1:1 binding stoichiometry by ESIPT hinder. The in situ generated 1-Cu2+ complex can serve as an "on-off" fluorescent probe for high selectivity toward biothiols via Cu2+ displacement approach, which exerts ESIPT recovery. It is worth pointing out that the 1-Cu2+ complex shows faster for cysteins (within 1min) than other biothiols such as homocysteine (25min) and glutathione (25min). Moreover, the compound 1 displays 160nm Stoke-shift for reversibly monitoring Cu2+ and biothiols. In addition, the probe is successfully used for fluorescent cellular imaging. This strategy via modulation the ESIPT state has been used for determination of Cu2+ and Cys with satisfactory results, which further demonstrates its value of practical applications.
Collapse
Affiliation(s)
- Youming Shen
- Hunan Province Cooperative Innovation Center for The Construction & Development of Dongting Lake Ecological Economic Zone, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China; Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China; Key Laboratory of Preparation and Application of Environmentally Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, PR China
| | - Xiangyang Zhang
- Hunan Province Cooperative Innovation Center for The Construction & Development of Dongting Lake Ecological Economic Zone, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China.
| | - Chunxiang Zhang
- Hunan Province Cooperative Innovation Center for The Construction & Development of Dongting Lake Ecological Economic Zone, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
| | - Junling Jin
- Hunan Province Cooperative Innovation Center for The Construction & Development of Dongting Lake Ecological Economic Zone, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| |
Collapse
|
15
|
Inoue K, Aikawa S, Fukushima Y. Colorimetric chemosensor based on a carminic acid and Pb2+ complex for selective detection of cysteine over homocysteine and glutathione in aqueous solution. J INCL PHENOM MACRO 2017. [DOI: 10.1007/s10847-017-0772-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
16
|
Xue Z, Fu X, Rao H, Hassan Ibrahim M, Xiong L, Liu X, Lu X. A colorimetric indicator-displacement assay for cysteine sensing based on a molecule-exchange mechanism. Talanta 2017; 174:667-672. [DOI: 10.1016/j.talanta.2017.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 06/23/2017] [Accepted: 07/01/2017] [Indexed: 11/28/2022]
|
17
|
Wu C, Wang J, Shen J, Zhang C, Wu Z, Zhou H. A colorimetric quinoline-based chemosensor for sequential detection of copper ion and cyanide anions. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.08.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Peng J, Liu G, Yuan D, Feng S, Zhou T. A flow-batch manipulated Ag NPs based SPR sensor for colorimetric detection of copper ions (Cu 2+ ) in water samples. Talanta 2017; 167:310-316. [DOI: 10.1016/j.talanta.2017.02.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/26/2017] [Accepted: 02/04/2017] [Indexed: 11/26/2022]
|
19
|
Coumarin Based Highly Selective “off-on-off” Type Novel Fluorescent Sensor for Cu2+ and S2− in Aqueous Solution. J Fluoresc 2016; 27:463-471. [DOI: 10.1007/s10895-016-1972-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/03/2016] [Indexed: 10/20/2022]
|
20
|
Goh H, Ko YG, Nam TK, Singh A, Singh N, Jang DO. A benzimidazole-based fluorescent chemosensor for Cu2+ recognition and its complex for sensing H2PO4− by a Cu2+ displacement approach in aqueous media. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.08.074] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Dey G, Venkateswarulu M, Vivekananthan V, Pramanik A, Krishnan V, Koner RR. Sub-Picomolar Recognition of Cr3+ through Bioinspired Organic–Inorganic Ensemble Utilization. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gourab Dey
- School
of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi-175005, Himachal Pradesh, India
| | - Mangili Venkateswarulu
- School
of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi-175005, Himachal Pradesh, India
| | - Venkateswaran Vivekananthan
- School
of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi-175005, Himachal Pradesh, India
| | - Avijit Pramanik
- Department
of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Venkata Krishnan
- School
of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi-175005, Himachal Pradesh, India
| | - Rik Rani Koner
- School
of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi-175005, Himachal Pradesh, India
| |
Collapse
|
22
|
Singh Y, Arun S, Singh BK, Dutta PK, Ghosh T. Colorimetric and ON–OFF–ON fluorescent chemosensor for the sequential detection of Cu(ii) and cysteine and its application in imaging of living cells. RSC Adv 2016. [DOI: 10.1039/c6ra15458a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An easy-to-prepare colorimetric and ON–OFF–ON fluorescent naphthol derivative 1 has been used for sequential detection of Cu2+ and cysteine.
Collapse
Affiliation(s)
- Yadvendra Singh
- Department of Chemistry
- Motilal Nehru National Institute of Technology
- Allahabad
- India
| | - Shiva Arun
- Department of Chemistry
- Motilal Nehru National Institute of Technology
- Allahabad
- India
| | - Brijesh Kumar Singh
- Department of Chemistry
- Motilal Nehru National Institute of Technology
- Allahabad
- India
| | - Pradip Kumar Dutta
- Department of Chemistry
- Motilal Nehru National Institute of Technology
- Allahabad
- India
| | - Tamal Ghosh
- Department of Chemistry
- Motilal Nehru National Institute of Technology
- Allahabad
- India
| |
Collapse
|