1
|
Talpada N, Sharma AS, Sharma VS, Varma RS, Shrivastav PS, Ahmed R, Ammathnadu Sudhakar A. Visible light mediated synthesis of 1,3-diarylated imidazo[1,5- a]pyridines via oxidative amination of C-H catalyzed by graphitic carbon nitride. Org Biomol Chem 2023. [PMID: 37969017 DOI: 10.1039/d3ob01636f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Graphitic carbon nitride (g-C3N4) as a novel heterogeneous catalyst is employed for the visible light-mediated synthesis of the imidazo[1,5-a]pyridines via the oxidative amination of C-H bond at room temperature without the need for any additional solvent. Extensive characterization of the catalyst was performed using techniques such as FT-IR, PXRD, TGA, SEM and EDX analysis. The optimized conditions enabled the successful and expeditious conversion of a wide range of substrates to imidazo[1,5-a]pyridines in good yields; a notable advantage of this catalyst being recyclability, as it can be reused for up to five cycles without significant loss of activity. This feature makes it suitable for gram-scale synthesis of imidazo[1,5-a]pyridines. Additionally, this approach offers several benefits from a green chemistry perspective as affirmed by its favorable green chemistry metrics (GCM), including low process mass intensity (PMI), low E-factor, high atom economy (AE), and good reaction mass efficiency (RME) relative to existing protocols. In addition, chemical yield (CY), mass intensity (MI), mass productivity (MP) and optimum efficiency were also calculated. This environmentally friendly method offers multiple advantages and represents a significant advancement in the synthesis of imidazo[1,5-a]pyridines.
Collapse
Affiliation(s)
- Nandish Talpada
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009, India.
| | - Anuj S Sharma
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009, India.
| | - Vinay S Sharma
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009, India.
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Pranav S Shrivastav
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009, India.
| | - Rahul Ahmed
- Department of Chemistry, Indian Institute of Technology, Guwahati, 781039, Assam, India.
| | - Achalkumar Ammathnadu Sudhakar
- Department of Chemistry, Indian Institute of Technology, Guwahati, 781039, Assam, India.
- Centre for Sustainable Polymers, Indian Institute of Technology, Guwahati, 781039, Assam, India
| |
Collapse
|
2
|
Ramírez-Coronel AA, Mezan SO, Patra I, Sivaraman R, Riadi Y, Khakberdiev S, Lafta HA, Abosaooda M, Turki Jalil A, Fakri Mustafa Y. A green chemistry approach for oxidation of alcohols using novel bioactive cobalt composite immobilized on polysulfone fibrous network nanoparticles as a catalyst. Front Chem 2022; 10:1015515. [PMID: 36605117 PMCID: PMC9807923 DOI: 10.3389/fchem.2022.1015515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/12/2022] [Indexed: 12/24/2022] Open
Abstract
In this study, cobalt composite immobilized on polysulfone fibrous network nanoparticles (CCPSF NPs) were synthesized in a controllable and one-step way under microwave-assisted conditions. The structure of CCPSF NPs was characterized by SEM images (for morphology and size distribution), TGA (for thermal stability), BET technique (for the specific surface area), FT-IR spectroscopy (for relation group characterization), and XRD patterns (for crystal size). The oxidation of the primary and secondary alcohols to aldehyde and ketone was investigated using synthesized CCPSF NPs under solvent-free microwave-assisted conditions, and high oxidizing activity was observed. In addition to oxidation properties, the anticancer activity of the synthesized CCPSF NPs in breast cancer was evaluated by the MTT method , and significant results were obtained.
Collapse
Affiliation(s)
- Andrés Alexis Ramírez-Coronel
- Laboratory of Psychometrics, Comparative Psychology and Ethology (LABPPCE), Health and Behavior Research Group (HBR), Cuenca, Ecuador
| | - Salim Oudah Mezan
- General Directorate of Education in Al-Muthanna Governorate, Ministry of Education, Baghdad, Iraq
| | - Indrajit Patra
- An Independent Researcher, NIT Durgapur, Durgapur, West Bengal, India
| | - Ramaswamy Sivaraman
- Department of Mathematics, Dwaraka Doss Goverdhan Doss Vaishnav College, University of Madras, Chennai, India
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Shukhrat Khakberdiev
- Head of the Chemistry Department, Jizzakh Polytechnic Institute, Jizzakh, Uzbekistan
| | | | | | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Hilla, Babylon, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq,*Correspondence: Yasser Fakri Mustafa, ; Abduladheem Turki Jalil,
| |
Collapse
|
3
|
Wang W, Nadagouda MN, Mukhopadhyay SM. Advances in Matrix-Supported Palladium Nanocatalysts for Water Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3593. [PMID: 36296782 PMCID: PMC9612339 DOI: 10.3390/nano12203593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Advanced catalysts are crucial for a wide range of chemical, pharmaceutical, energy, and environmental applications. They can reduce energy barriers and increase reaction rates for desirable transformations, making many critical large-scale processes feasible, eco-friendly, energy-efficient, and affordable. Advances in nanotechnology have ushered in a new era for heterogeneous catalysis. Nanoscale catalytic materials are known to surpass their conventional macro-sized counterparts in performance and precision, owing it to their ultra-high surface activities and unique size-dependent quantum properties. In water treatment, nanocatalysts can offer significant promise for novel and ecofriendly pollutant degradation technologies that can be tailored for customer-specific needs. In particular, nano-palladium catalysts have shown promise in degrading larger molecules, making them attractive for mitigating emerging contaminants. However, the applicability of nanomaterials, including nanocatalysts, in practical deployable and ecofriendly devices, is severely limited due to their easy proliferation into the service environment, which raises concerns of toxicity, material retrieval, reusability, and related cost and safety issues. To overcome this limitation, matrix-supported hybrid nanostructures, where nanocatalysts are integrated with other solids for stability and durability, can be employed. The interaction between the support and nanocatalysts becomes important in these materials and needs to be well investigated to better understand their physical, chemical, and catalytic behavior. This review paper presents an overview of recent studies on matrix-supported Pd-nanocatalysts and highlights some of the novel emerging concepts. The focus is on suitable approaches to integrate nanocatalysts in water treatment applications to mitigate emerging contaminants including halogenated molecules. The state-of-the-art supports for palladium nanocatalysts that can be deployed in water treatment systems are reviewed. In addition, research opportunities are emphasized to design robust, reusable, and ecofriendly nanocatalyst architecture.
Collapse
Affiliation(s)
- Wenhu Wang
- Frontier Institute for Research in Sensor Technologies (FIRST), The University of Maine, Orono, ME 04469, USA
| | | | - Sharmila M. Mukhopadhyay
- Frontier Institute for Research in Sensor Technologies (FIRST), The University of Maine, Orono, ME 04469, USA
- Department of Mechanical Engineering, The University of Maine, Orono, ME 04469, USA
| |
Collapse
|
4
|
Polymer-supported first-row transition metal schiff base complexes: Efficient catalysts for epoxidation of alkenes. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
5
|
Oroujzadeh N, Baradaran Z, Sedrpoushan A. An efficient heterogeneous Cu(I) complex for the catalytic oxidation of alcohols and sulfides: synthesis, characterization, and investigation of the catalyst activity. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1950698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Nasrin Oroujzadeh
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Zahra Baradaran
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Alireza Sedrpoushan
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| |
Collapse
|
6
|
Das AK, Nandy S, Bhar S. Chemoselective and ligand‐free aerobic oxidation of benzylic alcohols to carbonyl compounds using alumina‐supported mesoporous nickel nanoparticle as an efficient recyclable heterogeneous catalyst. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Asit Kumar Das
- Department of Chemistry Krishnath College Berhampore India
| | - Sneha Nandy
- Department of Chemistry Jadavpur University Kolkata India
| | - Sanjay Bhar
- Department of Chemistry Jadavpur University Kolkata India
| |
Collapse
|
7
|
Li C, Yuan S, Xie Y, Guo Y, Cheng Y, Yu H, Qian H, Yao W. Transformation of fluopyram during enzymatic hydrolysis of apple and its effect on polygalacturonase and apple juice yield. Food Chem 2021; 357:129842. [PMID: 33930695 DOI: 10.1016/j.foodchem.2021.129842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/28/2021] [Accepted: 04/11/2021] [Indexed: 02/04/2023]
Abstract
China is one of the largest apple-growing areas in the world. Fluopyram (FLP) is a novel pesticide that has been widely used in agriculture. This work investigated the behavior of pesticides during enzymatic hydrolysis of apple juice and its effect on polygalacturonase (PG), apple juice yield, and flavor. The study findings revealed that 27.5% to 34.2% FLP was degraded during the enzymatic hydrolysis of apple. The three degradation products (P1, P2, and P3) were identified by a hybrid ion trap-orbitrap mass spectrometer. Based on toxicity assessment, it was found that carcinogenicity was higher for P2 and P3 than for FLP. Furthermore, FLP affected the yield and flavor of apple juice. FLP reduced yield by 4.8%, because FLP inhibited the activity of PG. Through molecular docking, it was found that there was an interaction between the active center of PG and FLP, resulting in a reduction in catalytic ability.
Collapse
Affiliation(s)
- Changjian Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Shaofeng Yuan
- State Key Laboratory of Food Science and Technology, Jiangnan University, School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China.
| |
Collapse
|
8
|
Verma P, Potter ME, Oakley AE, Mhembere PM, Raja R. Bimetallic PdAu Catalysts within Hierarchically Porous Architectures for Aerobic Oxidation of Benzyl Alcohol. NANOMATERIALS 2021; 11:nano11020350. [PMID: 33535412 PMCID: PMC7912745 DOI: 10.3390/nano11020350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 01/05/2023]
Abstract
Hierarchically porous (HP) zeotype materials (possessing both micropores and mesopores) offer improved diffusional access to intra-framework active sites, analogous to mesoporous materials, yet retain the high selectivity of the microporous (MP) bulk. We have recently designed crystalline hierarchically porous silicoaluminophosphates (SAPOs) with enhanced mass-transport characteristics, which can lead to significant improvement in catalytic activity and catalyst lifetime. In this study, we have prepared PdAu bimetallic nanostructures supported on HP-SAPO frameworks by an incipient impregnation of metal precursors followed by H2 reduction at 300 °C, for the aerobic oxidation of benzyl alcohol to benzaldehyde. PdAu NPs supported on HP framework displayed significantly enhanced catalytic activities, when compared with their MP analogues, clearly highlighting the benefits of introducing hierarchical porosity in the SAPO support matrix.
Collapse
|
9
|
Li C, Yuan S, Jiang F, Xie Y, Guo Y, Yu H, Cheng Y, Qian H, Yao W. Degradation of fluopyram in water under ozone enhanced microbubbles: Kinetics, degradation products, reaction mechanism, and toxicity evaluation. CHEMOSPHERE 2020; 258:127216. [PMID: 32535436 DOI: 10.1016/j.chemosphere.2020.127216] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/09/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
The degradation of fluopyram (FLP) was investigated under ozone-microbubble treatment (OMBT). Kinetic models were established to study the influence of three treatments: ozonated water, microbubbles (MCB), and OMBT. FLP degraded completely in OMBT, and a clearance rate of 89.8-100% was achievable. Three direct transformation products [product 1 (F1), product 2 (F2), and product 3(F3)] were isolated and identified using a hybrid ion trap-orbitrap mass spectrometer. Moreover, a transformation theory of FLP degradation was developed according to targeted fragmentation, accurate mass measurements, and degradation profiles. These analyses showed that the products originated from a series of chemical reactions involving dechlorination, hydroxyl substitution, cleavage and oxidation, and were further confirmed based on molecular electrostatic potential and molecular orbital theory. In addition, the stability and toxicity of FLP and its transformation products were tested using the Toxicity Estimation Software Tool (T.E.S.T.) and the Ecological Structure Activity Relationships (ECOSAR) program. Products F1, F2 and F3 were found to be toxic substances, but their toxicity to aquatic organisms was lower than that of FLP. However, they were more toxic to rats than FLP, and their physicochemical properties were more stable. Overall, OMBT is a highly effective method for FLP removal during wastewater treatment.
Collapse
Affiliation(s)
- Changjian Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Shaofeng Yuan
- State Key Laboratory of Food Science and Technology, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Feng Jiang
- Hubei Provincial Engineering and Technology Research Centre for Food Quality and Safety Test, Hubei Provincial Institute for Food Supervision and Test, Wuhan, Hubei Province, 430075, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China.
| |
Collapse
|
10
|
Rahimi J, Niksefat M, Maleki A. Fabrication of Fe 3O 4@PVA-Cu Nanocomposite and Its Application for Facile and Selective Oxidation of Alcohols. Front Chem 2020; 8:615. [PMID: 32850642 PMCID: PMC7396633 DOI: 10.3389/fchem.2020.00615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/11/2020] [Indexed: 11/30/2022] Open
Abstract
Fe3O4@PVA-Cu nanocomposite was introduced as an affordable catalyst for selective oxidation of alcohols into various aldehydes and ketones. The synthesized nanocomposite was characterized by applying essential analyses. The peaks that are appeared in FT-IR spectroscopy confirmed the production of the Fe3O4@PVA-Cu nanocomposite. In addition, EDX analysis proved the presence of oxygen, carbon, iron, and copper elements in the catalyst. Further, TGA analysis showed high thermal stability of the nanocomposite. VSM technique was applied to examine the magnetic property of the nanocomposite. The results demonstrated a high magnetic property in the catalyst, which enables easy separation of it from the reaction solution. TEM and SEM imaging showed the nanoscale size of the particles (~20 nm) in the catalyst. Additionally, XRD data was compatible with that of Fe3O4 nanoparticles. The application of the nanocomposite has been studied in the selective oxidation of alcohols in the presence of acetonitrile as solvent, and hydrogen peroxide as a supplementary oxidizing agent. This technique is remarkably facile and inexpensive. Further, the products showed high yields. In addition, the calculated TON and TOF values indicated the phenomenal efficiency of the nanocomposite in preparation of targeted products.
Collapse
Affiliation(s)
- Jamal Rahimi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Maryam Niksefat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
11
|
Nasrollahzadeh M, Shafiei N, Nezafat Z, Soheili Bidgoli NS, Soleimani F. Recent progresses in the application of cellulose, starch, alginate, gum, pectin, chitin and chitosan based (nano)catalysts in sustainable and selective oxidation reactions: A review. Carbohydr Polym 2020; 241:116353. [DOI: 10.1016/j.carbpol.2020.116353] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/07/2020] [Accepted: 04/19/2020] [Indexed: 10/24/2022]
|
12
|
Recent progresses in the application of lignin derived (nano)catalysts in oxidation reactions. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110942] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Recent progresses in polymer supported cobalt complexes/nanoparticles for sustainable and selective oxidation reactions. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Nasrollahzadeh M, Sajjadi M, Shokouhimehr M, Varma RS. Recent developments in palladium (nano)catalysts supported on polymers for selective and sustainable oxidation processes. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.06.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Hosseini S, Amoozadeh A, Akbarzadeh Y. Nano‐WO
3
‐SO
3
H as a New Photocatalyst Insight Through Covalently Grafted Brønsted Acid: Highly Efficient Selective Oxidation of Benzyl Alcohols to Aldehydes. Photochem Photobiol 2019; 95:1320-1330. [DOI: 10.1111/php.13142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/26/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Saber Hosseini
- Department of Organic Chemistry, Faculty of Chemistry Semnan University Semnan Iran
| | - Ali Amoozadeh
- Department of Organic Chemistry, Faculty of Chemistry Semnan University Semnan Iran
| | - Yasaman Akbarzadeh
- Department of Organic Chemistry, Faculty of Chemistry Semnan University Semnan Iran
| |
Collapse
|
16
|
Jiang X, Liu J, Ma S. Iron-Catalyzed Aerobic Oxidation of Alcohols: Lower Cost and Improved Selectivity. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.8b00374] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xingguo Jiang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jinxian Liu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| |
Collapse
|
17
|
Torres-Sánchez C, Pérez-López AM, Alqahtani MN, Unciti-Broceta A, Rubio-Ruiz B. Design and manufacture of functional catalyst-carrier structures for the bioorthogonal activation of anticancer agents. NEW J CHEM 2019. [DOI: 10.1039/c8nj05704d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Achieving the activation of a latent prodrug via bio-orthogonal chemistry on the catalytic surface of a tailored Ti-[Pd] device.
Collapse
Affiliation(s)
- Carmen Torres-Sánchez
- Wolfson School of Mechanical
- Electrical and Manufacturing Engineering
- Loughborough University
- Loughborough
- UK
| | - Ana M. Pérez-López
- Cancer Research UK Edinburgh Centre
- Institute of Genetics and Molecular Medicine
- The University of Edinburgh
- Edinburgh EH4 2XR
- UK
| | - Mohammad N. Alqahtani
- Wolfson School of Mechanical
- Electrical and Manufacturing Engineering
- Loughborough University
- Loughborough
- UK
| | - Asier Unciti-Broceta
- Cancer Research UK Edinburgh Centre
- Institute of Genetics and Molecular Medicine
- The University of Edinburgh
- Edinburgh EH4 2XR
- UK
| | - Belén Rubio-Ruiz
- Cancer Research UK Edinburgh Centre
- Institute of Genetics and Molecular Medicine
- The University of Edinburgh
- Edinburgh EH4 2XR
- UK
| |
Collapse
|
18
|
New Photodegradation Products of the Fungicide Fluopyram: Structural Elucidation and Mechanism Identification. Molecules 2018; 23:molecules23112940. [PMID: 30423852 PMCID: PMC6278505 DOI: 10.3390/molecules23112940] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/30/2018] [Accepted: 11/09/2018] [Indexed: 01/06/2023] Open
Abstract
Identifying the fate of agrochemicals is important to understand their potential risk for living organisms. We report here new photodegradation products (PPs) of the fungicide fluopyram. The PPs were produced by irradiating a fluopyram standard in 0.1% acetonitrile aqueous media by a 150-W medium pressure Hg-lamp that emits wavelengths between 200⁻280 nm. The structural elucidation of PPs was achieved by combining the retention time, isotopic pattern, targeted fragmentation, and accurate mass measurements using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and high resolution-MS (HRMS). In addition to previously known PPs, seven new PPs of fluopyram were identified in this work: mainly dihydroxyl and hydroxylimide fluopyram as well as mono, di, and trihydroxyl lactam. Additionally, two PPs were found to be formed by rearrangement after the loss of H₂C=CH₂. Hence, the results of the work contribute to extending the current knowledge regarding the photoinduced fate of agrochemicals, and fluopyram in particular.
Collapse
|
19
|
Zohreh N, Hosseini SH, Tavakolizadeh M, Busuioc C, Negrea R. Palladium pincer complex incorporation onto the Fe3O4-entrapped cross-linked multilayered polymer as a high loaded nanocatalyst for oxidation. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.06.076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Removal of Methylene Blue from Water by BiFeO3/Carbon Fibre Nanocomposite and Its Photocatalytic Regeneration. Catalysts 2018. [DOI: 10.3390/catal8070267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
21
|
Luo Z, Fan S, Liu J, Liu W, Shen X, Wu C, Huang Y, Huang G, Huang H, Zheng M. A 3D Stable Metal⁻Organic Framework for Highly Efficient Adsorption and Removal of Drug Contaminants from Water. Polymers (Basel) 2018; 10:polym10020209. [PMID: 30966245 PMCID: PMC6414845 DOI: 10.3390/polym10020209] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 01/10/2023] Open
Abstract
We herein selected a 3D metal–organic framework decorated with carboxylate groups as an adsorbent to remove the pharmaceutical molecules of diclofenac sodium and chlorpromazine hydrochloride from water. The experiment aimed at exploring the effect factors of initial concentration, equilibrium time, temperature, pH and adsorbent dosage on the adsorption process. The adsorption uptake rate of the diclofenac sodium is much higher than that of the chlorpromazine hydrochloride. This paper presents the high adsorption capacity of diclofenac sodium, in which porous MOFs are used for the removal of drug contaminants from water. According to linear fitting with adsorption isotherm equation and kinetic equations, diclofenac sodium conforms to the Langmuir model and pseudo-first-order kinetic equation, while chlorpromazine hydrochloride accords with the Temkin model and pseudo-second-order kinetic equation. The results of the study indicate that the title compound could be a promising hybrid material for removing diclofenac sodium and chlorpromazine hydrochloride from wastewater.
Collapse
Affiliation(s)
- Zhidong Luo
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Shuran Fan
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Jianqiang Liu
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Weicong Liu
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Xin Shen
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Chuangpeng Wu
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Yijia Huang
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Gaoxiang Huang
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Hui Huang
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Mingbin Zheng
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
22
|
Liu G, Wang Y, Zhu B, Zhang L, Su CY. A porous metal–organic aerogel based on dirhodium paddle-wheels as an efficient and stable heterogeneous catalyst towards the reduction reaction of aldehydes and ketones. NEW J CHEM 2018. [DOI: 10.1039/c8nj01784k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new mesoporous metal–organic aerogel based on dirhodium paddle-wheels has been successfully synthesized and applied in the hydrosilylation reaction of aldehydes and ketones.
Collapse
Affiliation(s)
- Gang Liu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- Lehn Institute of Functional Materials
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
| | - Yanhu Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- Lehn Institute of Functional Materials
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
| | - Baofu Zhu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- Lehn Institute of Functional Materials
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
| | - Li Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- Lehn Institute of Functional Materials
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- Lehn Institute of Functional Materials
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
| |
Collapse
|
23
|
Verma S, Baig RBN, Nadagouda MN, Varma RS. Photocatalytic C-H Activation and Oxidative Esterification Using Pd@g-C 3N 4. Catal Today 2018; 309:248-252. [PMID: 31595104 PMCID: PMC6781236 DOI: 10.1016/j.cattod.2017.06.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Graphitic carbon nitride supported palladium nanoparticles, Pd@g-C3N4, have been synthesized and utilized for the direct oxidative esterification of alcohols using atmospheric oxygen as a co-oxidant via photocatalytic C-H activation.
Collapse
Affiliation(s)
- Sanny Verma
- Sustainable Technology Division, National Risk Management Research Laboratory, U. S. Environmental Protection Agency, 26 West Martin Luther King Drive, MS 443, Cincinnati, Ohio 45268, USA
| | - R. B. Nasir Baig
- Sustainable Technology Division, National Risk Management Research Laboratory, U. S. Environmental Protection Agency, 26 West Martin Luther King Drive, MS 443, Cincinnati, Ohio 45268, USA
| | - Mallikarjuna N. Nadagouda
- WQMB, WSWRD, National Risk Management Research Laboratory, U. S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, Ohio 45268, USA
| | - Rajender S. Varma
- Sustainable Technology Division, National Risk Management Research Laboratory, U. S. Environmental Protection Agency, 26 West Martin Luther King Drive, MS 443, Cincinnati, Ohio 45268, USA
| |
Collapse
|
24
|
Xiang W, Zhang Y, Lin H, Liu CJ. Nanoparticle/Metal-Organic Framework Composites for Catalytic Applications: Current Status and Perspective. Molecules 2017; 22:E2103. [PMID: 29189744 PMCID: PMC6149823 DOI: 10.3390/molecules22122103] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/26/2017] [Accepted: 11/27/2017] [Indexed: 11/17/2022] Open
Abstract
Nanoparticle/metal-organic frameworks (MOF) based composites have recently attracted significant attention as a new class of catalysts. Such composites possess the unique features of MOFs (including clearly defined crystal structure, high surface area, single site catalyst, special confined nanopore, tunable, and uniform pore structure), but avoid some intrinsic weaknesses (like limited electrical conductivity and lack in the "conventional" catalytically active sites). This review summarizes the developed strategies for the fabrication of nanoparticle/MOF composites for catalyst uses, including the strategy using MOFs as host materials to hold and stabilize the guest nanoparticles, the strategy with subsequent MOF growth/assembly around pre-synthesized nanoparticles and the strategy mixing the precursors of NPs and MOFs together, followed by self-assembly process or post-treatment or post-modification. The applications of nanoparticle/MOF composites for CO oxidation, CO₂ conversion, hydrogen production, organic transformations, and degradation of pollutants have been discussed. Superior catalytic performances in these reactions have been demonstrated. Challenges and future developments are finally addressed.
Collapse
Affiliation(s)
- Wenlong Xiang
- Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Yueping Zhang
- Department of Chemistry, Tianjin University, Tianjin 300350, China.
| | - Hongfei Lin
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA.
| | - Chang-Jun Liu
- Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|