1
|
Semghouli A, Drahos L, Han J, Kiss L, Nonn M. Selective Synthesis of Tetrahydroisoquinoline and Piperidine Scaffolds by Oxidative Ring Opening/Ring Closing Protocols of Substituted Indenes and Cyclopentenes. ChemistryOpen 2025; 14:e202400475. [PMID: 39727225 PMCID: PMC12075104 DOI: 10.1002/open.202400475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Indexed: 12/28/2024] Open
Abstract
Novel tetrahydroisoquinoline and piperidine derivatives were selectively synthesized from substituted indenes or cyclopentenes. The process starts with an oxidative cleavage of the ring olefin bond, which gives reactive diformyl intermediates. By a ring-closing step using chiral (R) or (S) α-methylbenzylamine under a reductive amination protocol facilitated ring formation with ring expansion of the corresponding nitrogen-containing heterocycles. The stereocontrolled methodology enabled accurate control of the stereochemistry of the final products. Additionally, the synthesized amino acid derivatives possessing an aryl moiety in their structure may be relevant building blocks for foldamer chemistry.
Collapse
Affiliation(s)
- Anas Semghouli
- Institute of Organic ChemistryStereochemistry Research GroupHUN-REN Research Center for Natural SciencesH-1117BudapestMagyar tudósok krt. 2Hungary
| | - László Drahos
- Institute of Organic ChemistryMS Proteomics Research GroupHUN-REN Research Centre for Natural SciencesH-1117BudapestMagyar tudósok krt. 2Hungary
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest ResourcesCollege of Chemical EngineeringNanjing Forestry UniversityNanjing210037China
| | - Loránd Kiss
- Institute of Organic ChemistryStereochemistry Research GroupHUN-REN Research Center for Natural SciencesH-1117BudapestMagyar tudósok krt. 2Hungary
| | - Melinda Nonn
- MTA TTK Lendület Artificial Transporter Research GroupInstitute of Materials and Environmental ChemistryHUN-REN Research Center for Natural SciencesH-1117BudapestMagyar tudósok krt. 2Hungary
- National Drug Research and Development LaboratoryHUN-REN Research Centre for Natural SciencesMagyar tudósok krt. 21117BudapestHungary
| |
Collapse
|
2
|
Fossé P, Pfund E, Lequeux T. Photocatalyzed Hydroaminodifluoroalkylation of Alkenes. Chemistry 2023; 29:e202301793. [PMID: 37466455 DOI: 10.1002/chem.202301793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
The synthesis of undescribed β-aminodifluoroethylsulfinates and their uses in the hydroaminodifluoroalkylation of alkenes is reported. This reaction is performed in the presence of a photocatalyst (4CzIPN, Ru complexes) and enables the direct incorporation of a β-difluoroamine moiety into vinylic aryls, unactivated alkenes, and electron-rich, or -deficient alkenes. The mechanism was studied, and the formation of a gem-difluoromethyl radical was observed after the selective oxidation of the sulfinate function.
Collapse
Affiliation(s)
- Pierre Fossé
- Normandie Université, Laboratoire de Chimie Moléculaire et Thioorganique, LCMT UMR 6507 ENSICAEN, UNICAEN, CNRS, 6 Bd. du Maréchal Juin, 14050, Caen, France
| | - Emmanuel Pfund
- Normandie Université, Laboratoire de Chimie Moléculaire et Thioorganique, LCMT UMR 6507 ENSICAEN, UNICAEN, CNRS, 6 Bd. du Maréchal Juin, 14050, Caen, France
| | - Thierry Lequeux
- Normandie Université, Laboratoire de Chimie Moléculaire et Thioorganique, LCMT UMR 6507 ENSICAEN, UNICAEN, CNRS, 6 Bd. du Maréchal Juin, 14050, Caen, France
| |
Collapse
|
3
|
Debreczeni N, Hotzi J, Bege M, Lovas M, Mező E, Bereczki I, Herczegh P, Kiss L, Borbás A. N-Fluoroalkylated Morpholinos - a New Class of Nucleoside Analogues. Chemistry 2023; 29:e202203248. [PMID: 36437234 DOI: 10.1002/chem.202203248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 11/29/2022]
Abstract
The first concise and efficient synthesis of some fluorine-containing morpholino nucleosides has been developed. One synthetic strategy was based on the oxidative ring cleavage of the vicinal diol unit of uridine, cytidine adenosine and guanosine derivatives, followed by cyclisation of the dialdehyde intermediates by double reductive amination with fluorinated primary amines to obtain various N-fluoroalkylated morpholinos. Another approach involved cyclisation of the diformyl intermediates with ammonia source, followed by dithiocarbamate formation and desulfurization-fluorination with diethylaminosulfur trifluoride yielding the corresponding morpholine-based nucleoside analogues with a N-CF3 element in their structure.
Collapse
Affiliation(s)
- Nóra Debreczeni
- Department of Pharmaceutical Chemistry, University of Debrecen, 4032, Debrecen, Egyetem tér 1, Hungary
| | - Judit Hotzi
- Department of Pharmaceutical Chemistry, University of Debrecen, 4032, Debrecen, Egyetem tér 1, Hungary
| | - Miklós Bege
- Department of Pharmaceutical Chemistry, University of Debrecen, 4032, Debrecen, Egyetem tér 1, Hungary.,Institute of Healthcare Industry, University of Debrecen, 4032, Debrecen, Nagyerdei krt. 98, Hungary.,MTA-DE Molecular Recognition and Interaction Research Group, University of Debrecen, 4032, Debrecen, Egyetem tér 1, Hungary
| | - Miklós Lovas
- Department of Pharmaceutical Chemistry, University of Debrecen, 4032, Debrecen, Egyetem tér 1, Hungary
| | - Erika Mező
- Department of Pharmaceutical Chemistry, University of Debrecen, 4032, Debrecen, Egyetem tér 1, Hungary
| | - Ilona Bereczki
- Department of Pharmaceutical Chemistry, University of Debrecen, 4032, Debrecen, Egyetem tér 1, Hungary.,Pharmamodul Research Group, University of Debrecen, 4032, Debrecen, Nagyerdei krt. 98, Hungary
| | - Pál Herczegh
- Department of Pharmaceutical Chemistry, University of Debrecen, 4032, Debrecen, Egyetem tér 1, Hungary
| | - Loránd Kiss
- Institute of Organic Chemistry, Stereochemistry Research Group, Research Centre for Natural Sciences, 1117, Budapest, Magyar tudósok krt. 2, Hungary
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, 4032, Debrecen, Egyetem tér 1, Hungary
| |
Collapse
|
4
|
Witt CH, Woerpel KA. Diastereoselective Alkylations of Chiral Tetrazolo[1,5- a]azepines via Heterobenzylic Anion Intermediates. Org Lett 2022; 24:6722-6727. [PMID: 36095147 PMCID: PMC9850863 DOI: 10.1021/acs.orglett.2c02445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The alkylations of chiral seven-membered rings fused to tetrazoles are highly diastereoselective. The diastereoselectivity depended on the placement and the size of the substituent on the ring and on the electrophile. Subsequent alkylations occurred with high stereoselectivity, allowing for the construction of quaternary stereocenters. Computational studies revealed that torsional effects are responsible for the observed diastereoselectivities. Substituted products can be reduced to the corresponding secondary amines, thus providing an approach for synthesizing diastereomerically enriched azepanes.
Collapse
Affiliation(s)
- Collin H. Witt
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, United States
| | - K. A. Woerpel
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, United States
| |
Collapse
|
5
|
Kiss L, Nonn M, Ouchakour L, Remete AM. Application of Oxidative Ring Opening/Ring Closing by Reductive Amination Protocol for the Stereocontrolled Synthesis of Functionalized Azaheterocycles. Synlett 2021. [DOI: 10.1055/s-0040-1719850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractThe current Account gives an insight into the synthesis of some N-heterocyclic β-amino acid derivatives and various functionalized saturated azaheterocycles accessed from substituted cycloalkenes via ring C=C bond oxidative cleavage followed by ring closing across double reductive amination. The ring-cleavage protocol has been accomplished according to two common approaches: a) Os-catalyzed dihydroxylation/NaIO4 vicinal diol oxidation and b) ozonolysis. A comparative study on these methodologies has been investigated. Due to the everincreasing relevance of organofluorine chemistry in drug research as well as of the high biological potential of β-amino acid derivatives several illustrative examples to the access of various fluorine-containing piperidine or azepane β-amino acid derivatives are also presented in the current Account.1 Introduction2 Olefin-Bond Transformation by Oxidative Ring Cleavage3 Synthesis of Saturated Azaheterocycles via Oxidative Ring-Opening/Ring-Closing Double Reductive Amination3.1 Importance of Fluorine-Containing Azaheterocycles in Pharmaceutical Research3.2 Synthesis of Azaheterocyclic Amino Acid Derivatives with a Piperidine or Azepane Framework through Oxidative Ring Opening/Reductive Amination3.2.1 Synthesis of Piperidine β-Amino Esters3.2.2 Synthesis of Azepane β-Amino Esters3.2.3 Synthesis of Fluorine-Containing Piperidine γ-Amino Esters3.3 Synthesis of Tetrahydroisoquinoline Derivatives through Oxidative Ring Opening/Reductive Amination Protocol3.4 Synthesis of Functionalized Benzazepines through Reductive Amination3.4.1 Synthesis of Benzo[c]azepines3.4.2 Synthesis of Benzo[d]azepines3.5 Synthesis of Various N-Heterocycles via Ozonolysis/Reductive Amination3.5.1 Synthesis of Compounds with an Azepane Ring3.5.2 Synthesis of Piperidine β-Amino Acids and Piperidine-Fused β-Lactams3.5.3 Synthesis of γ-Lactams with a Piperidine Ring3.5.4 Synthesis of other N-Heterocycles4 Summary and Outlook5 List of Abbreviations
Collapse
Affiliation(s)
- Loránd Kiss
- Institute of Organic Chemistry, Research Centre for Natural Sciences
| | - Melinda Nonn
- Institute of Pharmaceutical Chemistry, University of Szeged
| | | | | |
Collapse
|
6
|
Debreczeni N, Bege M, Herczeg M, Bereczki I, Batta G, Herczegh P, Borbás A. Tightly linked morpholino-nucleoside chimeras: new, compact cationic oligonucleotide analogues. Org Biomol Chem 2021; 19:8711-8721. [PMID: 34586122 DOI: 10.1039/d1ob01174j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The polyanionic phosphodiester backbone of nucleic acids contributes to high nuclease sensitivity and low cellular uptake and is therefore a major obstacle to the biological application of native oligonucleotides. Backbone modifications, particularly charge alterations is a proven strategy to provide artificial oligonucleotides with improved properties. Here, we describe the synthesis of a new type of oligonucleotide analogues consisting of a morpholino and a ribo- or deoxyribonucleoside in which the 5'-amino group of the nucleoside unit provides the nitrogen of the morpholine ring. The synthetic protocol is compatible with trityl and dimethoxytrityl protecting groups and azido functionality, and was extended to the synthesis of higher oligomers. The chimeras are positively charged in aqueous medium, due to the N-alkylated tertiary amine structure of the morpholino unit.
Collapse
Affiliation(s)
- Nóra Debreczeni
- Department of Pharmaceutical Chemistry, University of Debrecen, H-4032, Debrecen, Egyetem tér 1, Hungary.
- Doctoral School of Chemistry, University of Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, H-4032, Debrecen, Nagyerdei körút 98, Hungary
| | - Miklós Bege
- Department of Pharmaceutical Chemistry, University of Debrecen, H-4032, Debrecen, Egyetem tér 1, Hungary.
- Institute of Healthcare Industry, University of Debrecen, H-4032, Debrecen, Nagyerdei körút 98, Hungary
- MTA-DE Molecular Recognition and Interaction Research Group, UD, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Mihály Herczeg
- Department of Pharmaceutical Chemistry, University of Debrecen, H-4032, Debrecen, Egyetem tér 1, Hungary.
- Research Group for Oligosaccharide Chemistry of HAS, UD, H-4032, Debrecen, Egyetem tér 1, Hungary
| | - Ilona Bereczki
- Department of Pharmaceutical Chemistry, University of Debrecen, H-4032, Debrecen, Egyetem tér 1, Hungary.
- National Virology Laboratory, Szentágothai Research Centre, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Gyula Batta
- Department of Organic Chemistry, University of Debrecen, H-4032, Debrecen, Hungary
| | - Pál Herczegh
- Department of Pharmaceutical Chemistry, University of Debrecen, H-4032, Debrecen, Egyetem tér 1, Hungary.
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, H-4032, Debrecen, Egyetem tér 1, Hungary.
- National Virology Laboratory, Szentágothai Research Centre, Ifjúság útja 20, H-7624 Pécs, Hungary
| |
Collapse
|
7
|
Kaźmierczak M, Bilska‐Markowska M. Diethylaminosulfur Trifluoride (DAST) Mediated Transformations Leading to Valuable Building Blocks and Bioactive Compounds. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Marcin Kaźmierczak
- Faculty of Chemistry Adam Mickiewicz University in Poznań Uniwersytetu Poznańskiego 8 61-614 Poznań Poland
- Centre for Advanced Technologies Adam Mickiewicz University in Poznań Uniwersytetu Poznańskiego 10 61-614 Poznań Poland
| | - Monika Bilska‐Markowska
- Faculty of Chemistry Adam Mickiewicz University in Poznań Uniwersytetu Poznańskiego 8 61-614 Poznań Poland
| |
Collapse
|
8
|
Semghouli A, Benke Z, Remete AM, Novák TT, Fustero S, Kiss L. Selective Transformation of Norbornadiene into Functionalized Azaheterocycles and β-Amino Esters with Stereo- and Regiocontrol. Chem Asian J 2021; 16:3873-3881. [PMID: 34498420 DOI: 10.1002/asia.202100956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/03/2021] [Indexed: 11/06/2022]
Abstract
Novel functionalized azaheterocycles with multiple chiral centers have been accessed from readily available norbornene β-amino acids or β-lactams across a stereocontrolled synthetic route, based on ring-opening metathesis (ROM) of the staring unsaturated bicyclic amino esters, followed by selective cyclization through ring-closing metathesis (RCM). The RCM transformations have been studied under various experimental conditions to assess the scope of conversion, catalyst, yield, and substrate influence. The structure of the starting norbornene β-amino acids predetermined the structure of the new azaheterocycles, and the developed synthetic route took place with the conservation of the configuration of the chiral centers.
Collapse
Affiliation(s)
- Anas Semghouli
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, H-6720, Szeged, Eötvös u. 6, Hungary
| | - Zsanett Benke
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, H-6720, Szeged, Eötvös u. 6, Hungary
| | - Attila M Remete
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, H-6720, Szeged, Eötvös u. 6, Hungary
| | - Tamás T Novák
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, H-6720, Szeged, Eötvös u. 6, Hungary
| | - Santos Fustero
- Department of Organic Chemistry, University of Valencia, Pharmacy Faculty, 46100-Burjassot, Valencia, Spain
| | - Loránd Kiss
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, H-6720, Szeged, Eötvös u. 6, Hungary
| |
Collapse
|
9
|
Ouchakour L, Nonn M, Remete AM, Kiss L. An Improved Stereocontrolled Access Route to Piperidine or Azepane β‐Amino Esters and Azabicyclic β‐ and γ‐Lactams; Synthesis of Novel Functionalized Azaheterocyles. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lamiaa Ouchakour
- Institute of Pharmaceutical Chemistry University of Szeged 6720 Szeged Eötvös u. 6 Hungary
- Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry University of Szeged 6720 Szeged Eötvös u. 6 Hungary
| | - Melinda Nonn
- Institute of Pharmaceutical Chemistry University of Szeged 6720 Szeged Eötvös u. 6 Hungary
- Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry University of Szeged 6720 Szeged Eötvös u. 6 Hungary
| | - Attila M. Remete
- Institute of Pharmaceutical Chemistry University of Szeged 6720 Szeged Eötvös u. 6 Hungary
- Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry University of Szeged 6720 Szeged Eötvös u. 6 Hungary
| | - Loránd Kiss
- Institute of Pharmaceutical Chemistry University of Szeged 6720 Szeged Eötvös u. 6 Hungary
- Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry University of Szeged 6720 Szeged Eötvös u. 6 Hungary
| |
Collapse
|
10
|
Brittain WDG, Lloyd CM, Cobb SL. Synthesis of complex unnatural fluorine-containing amino acids. J Fluor Chem 2020; 239:109630. [PMID: 33144742 PMCID: PMC7583769 DOI: 10.1016/j.jfluchem.2020.109630] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 01/01/2023]
Abstract
The area of fluorinated amino acid synthesis has seen rapid growth over the past decade. As reports of singly fluorinated natural amino acid derivatives have grown, researchers have turned their attention to develop methodology to access complex proteinogenic examples. A variety of reaction conditions have been employed in this area, exploiting new advances in the wider synthetic community such as photocatalysis and palladium cross-coupling. In addition, novel fluorinated functional groups have also been incorporated into amino acids, with SFX and perfluoro moieties now appearing with more frequency in the literature. This review focuses on synthetic methodology for accessing complex non-proteinogenic amino acids, along with amino acids containing multiple fluorine atoms such as CF3, SF5 and perfluoroaromatic groups.
Collapse
Affiliation(s)
| | - Carissa M Lloyd
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Steven L Cobb
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
11
|
Bari A, Iqbal A, Khan ZA, Shahzad SA, Yar M. Synthetic approaches toward piperidine related structures: A review. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1776878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ayesha Bari
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Ahsan Iqbal
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Zulfiqar Ali Khan
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Sohail Anjum Shahzad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Muhammad Yar
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| |
Collapse
|
12
|
Zou L, Ruan Y, Jiang W, Yan N, Liu D, Yu C, Hu X. Switchable Regioselectivity in the Opening of Aziridine by Fluoride: DFT Calculation and Synthesis of Fluorinated Piperidines. ChemistrySelect 2019. [DOI: 10.1002/slct.201903403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Liangjing Zou
- National Engineering Research Center for Carbohydrate SynthesisJiangxi Normal University, Nanchang 330022 Jiangxi China
- Key Laboratory of Small Functional Organic Molecule, Ministry of EducationJiangxi Normal University, Nanchang Jiangxi 330022 P.R. China
| | - Yao Ruan
- National Engineering Research Center for Carbohydrate SynthesisJiangxi Normal University, Nanchang 330022 Jiangxi China
- Key Laboratory of Small Functional Organic Molecule, Ministry of EducationJiangxi Normal University, Nanchang Jiangxi 330022 P.R. China
| | - Wei Jiang
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority MedicineJiangxi University of Traditional Chinese Medicine China
| | - Nan Yan
- National Engineering Research Center for Carbohydrate SynthesisJiangxi Normal University, Nanchang 330022 Jiangxi China
- Key Laboratory of Small Functional Organic Molecule, Ministry of EducationJiangxi Normal University, Nanchang Jiangxi 330022 P.R. China
| | - De‐Yong Liu
- National Engineering Research Center for Carbohydrate SynthesisJiangxi Normal University, Nanchang 330022 Jiangxi China
| | - Chu‐Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Xiang‐Guo Hu
- National Engineering Research Center for Carbohydrate SynthesisJiangxi Normal University, Nanchang 330022 Jiangxi China
- Key Laboratory of Small Functional Organic Molecule, Ministry of EducationJiangxi Normal University, Nanchang Jiangxi 330022 P.R. China
| |
Collapse
|
13
|
Wang X, Huang D, Wang K, Liu J, Zong W, Wang J, Su Y, Hu Y. Tin powder promoted synthesis of trifluoroethylamine‐containing 3,3′‐disubstituted oxindoles. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xiaoping Wang
- College of Chemistry and Chemical EngineeringNorthwest Normal University Anning East 967 Road Lanzhou Gansu 730070 P. R. China
| | - Danfeng Huang
- College of Chemistry and Chemical EngineeringNorthwest Normal University Anning East 967 Road Lanzhou Gansu 730070 P. R. China
| | - Ke‐Hu Wang
- College of Chemistry and Chemical EngineeringNorthwest Normal University Anning East 967 Road Lanzhou Gansu 730070 P. R. China
| | - Jiaxin Liu
- College of Chemistry and Chemical EngineeringNorthwest Normal University Anning East 967 Road Lanzhou Gansu 730070 P. R. China
| | - Wuzhong Zong
- College of Chemistry and Chemical EngineeringNorthwest Normal University Anning East 967 Road Lanzhou Gansu 730070 P. R. China
| | - Juanjuan Wang
- College of Chemistry and Chemical EngineeringNorthwest Normal University Anning East 967 Road Lanzhou Gansu 730070 P. R. China
| | - Yingpeng Su
- College of Chemistry and Chemical EngineeringNorthwest Normal University Anning East 967 Road Lanzhou Gansu 730070 P. R. China
| | - Yulai Hu
- College of Chemistry and Chemical EngineeringNorthwest Normal University Anning East 967 Road Lanzhou Gansu 730070 P. R. China
| |
Collapse
|
14
|
Kiss L, Ouchakour L, Ábrahámi RA, Nonn M. Stereocontrolled Synthesis of Functionalized Azaheterocycles from Carbocycles through Oxidative Ring Opening/Reductive Ring Closing Protocols. CHEM REC 2019; 20:120-141. [PMID: 31250972 DOI: 10.1002/tcr.201900025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022]
Abstract
Fluorine-containing organic scaffolds are of significant interest in medicinal chemistry. The incorporation of fluorine into biomolecules can lead to remarkable changes in their physical, chemical, and biological properties. There are already many drugs on the market, which contain at least one fluorine atom. Saturated functionalized azaheterocycles as bioactive substances have gained increasing attention in pharmaceutical chemistry. Due to the high biorelevance of organofluorine molecules and the importance of N-heterocyclic compounds, selective stereocontrolled procedures to the access of new fluorine-containing saturated N-heterocycles are considered to be a hot research topic. This account summarizes the synthesis of functionalized and fluorine-containing saturated azaheterocycles starting from functionalized cycloalkenes and based on oxidative ring cleavage of diol intermediates followed by ring expansion with reductive amination.
Collapse
Affiliation(s)
- Loránd Kiss
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, Hungary
| | - Lamiaa Ouchakour
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, Hungary
| | - Renáta A Ábrahámi
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary
| | - Melinda Nonn
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,MTA-SZTE Stereochemistry Research Group, Hungarian Academy of Sciences, H-6720, Szeged, Eötvös u. 6, Hungary.,University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, Hungary
| |
Collapse
|
15
|
Ouchakour L, Ábrahámi RA, Forró E, Haukka M, Fülöp F, Kiss L. Stereocontrolled Synthesis of Fluorine-Containing Piperidine γ-Amino Acid Derivatives. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801540] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Lamiaa Ouchakour
- Institute of Pharmaceutical Chemistry; University of Szeged; Szeged, Eötvös u. Hungary
- Interdisciplinary Excellence Centre; Institute of Pharmaceutical Chemistry; University of Szeged; Szeged Hungary
| | - Renáta A. Ábrahámi
- Institute of Pharmaceutical Chemistry; University of Szeged; Szeged, Eötvös u. Hungary
| | - Enikő Forró
- Institute of Pharmaceutical Chemistry; University of Szeged; Szeged, Eötvös u. Hungary
| | - Matti Haukka
- Department of Chemistry; Institute of Pharmaceutical Chemistry; University of Jyväskylä; Finland
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry; University of Szeged; Szeged, Eötvös u. Hungary
- MTA-SZTE Stereochemistry Research Group; Hungarian Academy of Sciences; Szeged, Eötvös u. 6 Hungary
- Interdisciplinary Excellence Centre; Institute of Pharmaceutical Chemistry; University of Szeged; Szeged Hungary
| | - Loránd Kiss
- Institute of Pharmaceutical Chemistry; University of Szeged; Szeged, Eötvös u. Hungary
- Interdisciplinary Excellence Centre; Institute of Pharmaceutical Chemistry; University of Szeged; Szeged Hungary
| |
Collapse
|
16
|
Zhou S, Wang S, Wang J, Nian Y, Peng P, Soloshonok VA, Liu H. Configurationally Stable (S
)- and (R
)-α-Methylproline-Derived Ligands for the Direct Chemical Resolution of Free Unprotected β3
-Amino Acids. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shengbin Zhou
- University of Chinese Academy of Sciences; No.19A Yuquan Road 100049 Beijing China
- CAS Key Laboratory of Receptor Research; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 555 Zuchongzhi Road 201203 Shanghai China
| | - Shuni Wang
- University of Chinese Academy of Sciences; No.19A Yuquan Road 100049 Beijing China
- CAS Key Laboratory of Receptor Research; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 555 Zuchongzhi Road 201203 Shanghai China
| | - Jiang Wang
- University of Chinese Academy of Sciences; No.19A Yuquan Road 100049 Beijing China
- CAS Key Laboratory of Receptor Research; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 555 Zuchongzhi Road 201203 Shanghai China
| | - Yong Nian
- University of Chinese Academy of Sciences; No.19A Yuquan Road 100049 Beijing China
- CAS Key Laboratory of Receptor Research; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 555 Zuchongzhi Road 201203 Shanghai China
| | - Panfeng Peng
- University of Chinese Academy of Sciences; No.19A Yuquan Road 100049 Beijing China
- CAS Key Laboratory of Receptor Research; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 555 Zuchongzhi Road 201203 Shanghai China
| | - Vadim A. Soloshonok
- Department of Organic Chemistry I; Faculty of Chemistry; University of the Basque Country UPV/EHU; Paseo Manuel Lardizábal 3 20018 San Sebastián Spain
- IKERBASQUE - Basque Foundation for Science; Maria Diaz de Haro 3 48013 Bilbao Spain
| | - Hong Liu
- University of Chinese Academy of Sciences; No.19A Yuquan Road 100049 Beijing China
- CAS Key Laboratory of Receptor Research; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 555 Zuchongzhi Road 201203 Shanghai China
| |
Collapse
|
17
|
Kiss L, Fülöp F. Selective Synthesis of Fluorine-Containing Cyclic β-Amino Acid Scaffolds. CHEM REC 2017; 18:266-281. [PMID: 28892275 DOI: 10.1002/tcr.201700038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Indexed: 01/09/2023]
Abstract
Fluorine-containing organic molecules have generated increasing impact in drug research over the past decade. Their preparation and development of novel synthetic methods towards new types of fluorinated molecules among them of β-amino acid derivatives has received large interest. Our research group have designed various highly selective and stereocontrolled methods for the construction of fluorine-containing cyclic β-amino acid derivatives. The synthetic approaches developed for the synthesis of various pharmacologically interesting cyclic β-amino acid derivatives as monomers with multiple stereogenic centers might be valuable protocols for the access of other classes of organic compounds.
Collapse
Affiliation(s)
- Loránd Kiss
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,MTA-SZTE Stereochemistry Research Group, Hungarian Academy of Sciences, H-6720, Szeged, Eötvös u. 6, Hungary
| |
Collapse
|
18
|
Kiss L, Mándity IM, Fülöp F. Highly functionalized cyclic β-amino acid moieties as promising scaffolds in peptide research and drug design. Amino Acids 2017. [PMID: 28634827 DOI: 10.1007/s00726-017-2439-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Peptide-based drug research has received high attention in the field of medicinal chemistry over the past decade. For drug design, to improve proteolytic stability, it is desirable to include unnatural building blocks, such as conformationally restricted β-amino acid moieties, into the peptide sequence. Accordingly, the synthesis and incorporation of such conformationally rigid systems into novel type of peptides has gained large interest. Our research group has designed highly efficient methods for the construction of potential antimicrobial peptides. Moreover, a number of synthetic approaches have been developed for the synthesis of various pharmacologically interesting cyclic β-amino acid derivatives as monomers with multiple stereogenic centers.
Collapse
Affiliation(s)
- Loránd Kiss
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, 6720, Szeged, Hungary.
| | - István M Mándity
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, 6720, Szeged, Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, 6720, Szeged, Hungary.,MTA-SZTE Stereochemistry Research Group, Hungarian Academy of Sciences, Eötvös u. 6, 6720, Szeged, Hungary
| |
Collapse
|