1
|
Manganese(II)/cobalt(II) co-catalyzed phosphorylation of 8-aminoquinoline amides to construct Csp2-P bond. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
2
|
Wei P, Zhu Y, Zhang J, Ying J, Wu XF. Cobalt-catalyzed direct functionalization of indoles with isocyanides. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Lukasevics L, Cizikovs A, Grigorjeva L. Cobalt-catalyzed C(sp 2)-H bond imination of phenylalanine derivatives. Chem Commun (Camb) 2022; 58:9754-9757. [PMID: 35959660 DOI: 10.1039/d2cc02334b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report the cobalt-catalyzed, picolinamide-directed C-H bond imination protocol of phenylalanine derivatives using isocyanides and a Co(dpm)2 catalyst. A wide range of functional groups were tolerated under the reaction conditions, yielding imines in high yields. The obtained imine products can easily be transformed to 1-aminoisoquinoline derivatives under reductive conditions, providing an attractive alternative to already existing methodologies. The control experiments indicated that C-H activation might occur via an electrophilic pathway.
Collapse
Affiliation(s)
- Lukass Lukasevics
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia. .,Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Street 3, Riga, LV-1048, Latvia
| | - Aleksandrs Cizikovs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia.
| | - Liene Grigorjeva
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia.
| |
Collapse
|
4
|
Liu Y, Wu W, Sang X, Xia Y, Fang G, Hao W. I 2-mediated Csp 2–P bond formation via tandem cyclization of o-alkynylphenyl isothiocyanates with organophosphorus esters. RSC Adv 2022; 12:18072-18076. [PMID: 35800309 PMCID: PMC9207709 DOI: 10.1039/d2ra03072a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022] Open
Abstract
A highly efficient molecular-iodine-catalyzed cascade cyclization reaction has been developed, creating a series of 4H-benzo[d][1,3]thiazin-2-yl phosphonates in moderate to excellent yields. This approach benefits from metal-free catalysts and available raw materials.
Collapse
Affiliation(s)
- Yang Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Wenjin Wu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Xiaoyan Sang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Yu Xia
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Guojian Fang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Wenyan Hao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| |
Collapse
|
5
|
Savela R, Méndez‐Gálvez C. Isoindolinone Synthesis via One-Pot Type Transition Metal Catalyzed C-C Bond Forming Reactions. Chemistry 2021; 27:5344-5378. [PMID: 33125790 PMCID: PMC8048987 DOI: 10.1002/chem.202004375] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/30/2020] [Indexed: 11/06/2022]
Abstract
Isoindolinone structure is an important privileged scaffold found in a large variety of naturally occurring as well as synthetic, biologically and pharmaceutically active compounds. Owing to its crucial role in a number of applications, the synthetic methodologies for accessing this heterocyclic skeleton have received significant attention during the past decade. In general, the synthetic strategies can be divided into two categories: First, direct utilization of phthalimides or phthalimidines as starting materials for the synthesis of isoindolinones; and second, construction of the lactam and/or aromatic rings by different catalytic methods, including C-H activation, cross-coupling, carbonylation, condensation, addition and formal cycloaddition reactions. Especially in the last mentioned, utilization of transition metal catalysts provides access to a broad range of substituted isoindolinones. Herein, the recent advances (2010-2020) in transition metal catalyzed synthetic methodologies via formation of new C-C bonds for isoindolinones are reviewed.
Collapse
Affiliation(s)
- Risto Savela
- Johan Gadolin Process Chemistry CentreLaboratory of Molecular Science and TechnologyÅbo Akademi UniversityBiskopsgatan 820500TurkuFinland
| | - Carolina Méndez‐Gálvez
- Johan Gadolin Process Chemistry CentreLaboratory of Molecular Science and TechnologyÅbo Akademi UniversityBiskopsgatan 820500TurkuFinland
| |
Collapse
|
6
|
Gujjarappa R, Vodnala N, Malakar CC. Comprehensive Strategies for the Synthesis of Isoquinolines: Progress Since 2008. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000658] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Raghuram Gujjarappa
- Department of Chemistry National Institute of Technology Manipur Imphal 795004 Manipur India
| | - Nagaraju Vodnala
- Department of Chemistry National Institute of Technology Manipur Imphal 795004 Manipur India
| | - Chandi C. Malakar
- Department of Chemistry National Institute of Technology Manipur Imphal 795004 Manipur India
| |
Collapse
|
7
|
Liu Y, Yao S, Wang C, Zhang Y, Hao W. Copper(ii)-catalyzed tandem cyclization for the synthesis of benzo[ d][1,3]thiazin-2-yl phosphonates involving C-P and C-S bond formation. RSC Adv 2020; 10:32211-32215. [PMID: 35518184 PMCID: PMC9056576 DOI: 10.1039/d0ra06671k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 08/13/2020] [Indexed: 02/04/2023] Open
Abstract
A copper(ii)-catalyzed, high-efficiency and atom-economical synthesis of valuable organophosphorus compounds via tandem cyclization of o-alkynylphenyl isothiocyanates with phosphites is described. This protocol, having a good functional-group compatibility, provides a simple and direct pathway to organophosphorus heterocycles in good yields under mild conditions. The method could be efficiently scaled up to gram scale, thus providing a potential application of this cascade cyclization strategy in synthesis. A simple and highly efficient cascade cyclization of o-alkynylphenyl isothiocyanates with phosphites has been developed, affording a series of 4H-benzo[d][1,3]thiazin-2-yl phosphonates in moderate to good yields.![]()
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, College of Chemistry & Chemical Engineering, Jiangxi Normal University 99 Ziyang Road Nanchang Jiangxi 330022 P. R. China
| | - Shijie Yao
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, College of Chemistry & Chemical Engineering, Jiangxi Normal University 99 Ziyang Road Nanchang Jiangxi 330022 P. R. China
| | - Chaoli Wang
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, College of Chemistry & Chemical Engineering, Jiangxi Normal University 99 Ziyang Road Nanchang Jiangxi 330022 P. R. China
| | - Yahui Zhang
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, College of Chemistry & Chemical Engineering, Jiangxi Normal University 99 Ziyang Road Nanchang Jiangxi 330022 P. R. China
| | - Wenyan Hao
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, College of Chemistry & Chemical Engineering, Jiangxi Normal University 99 Ziyang Road Nanchang Jiangxi 330022 P. R. China
| |
Collapse
|
8
|
Mei R, Dhawa U, Samanta RC, Ma W, Wencel-Delord J, Ackermann L. Cobalt-Catalyzed Oxidative C-H Activation: Strategies and Concepts. CHEMSUSCHEM 2020; 13:3306-3356. [PMID: 32065843 DOI: 10.1002/cssc.202000024] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/14/2020] [Indexed: 06/10/2023]
Abstract
Inexpensive cobalt-catalyzed oxidative C-H functionalization has emerged as a powerful tool for the construction of C-C and C-Het bonds, which offers unique potential for transformative applications to modern organic synthesis. In the early stage, these transformations typically required stoichiometric and toxic transition metals as sacrificial oxidants; thus, the formation of metal-containing waste was inevitable. In contrast, naturally abundant molecular O2 has more recently been successfully employed as a green oxidant in cobalt catalysis, thus considerably improving the sustainability of such transformations. Recently, a significant momentum was gained by the use of electricity as a sustainable and environmentally benign redox reagent in cobalt-catalyzed C-H functionalization, thereby preventing the consumption of cost-intensive chemicals while at the same time addressing the considerable safety hazards related to the use of molecular oxygen in combination with flammable organic solvents. Considering the unparalleled potential of the aforementioned approaches for sustainable green synthesis, this Review summarizes the recent progress in cobalt-catalyzed oxidative C-H activation until early 2020.
Collapse
Affiliation(s)
- Ruhuai Mei
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, P. R. China
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610052, P. R. China
| | - Uttam Dhawa
- Institut für Organische und Biomolekulare Chemie, Georg-August Universität, Tammannstraße 2, 37077, Göttingen, Germany
| | - Ramesh C Samanta
- Institut für Organische und Biomolekulare Chemie, Georg-August Universität, Tammannstraße 2, 37077, Göttingen, Germany
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610052, P. R. China
| | - Joanna Wencel-Delord
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 25 Rue Becquerel, 67087, Strasbourg, France
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August Universität, Tammannstraße 2, 37077, Göttingen, Germany
- Department of Chemistry, University of Pavia, Viale Taramelli, 10, 27100, Pavia, Italy
| |
Collapse
|
9
|
Collet JW, Roose TR, Ruijter E, Maes BUW, Orru RVA. Base Metal Catalyzed Isocyanide Insertions. Angew Chem Int Ed Engl 2020; 59:540-558. [DOI: 10.1002/anie.201905838] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/01/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Jurriën W. Collet
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS)Vrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
- Organic SynthesisDepartment of ChemistryUniversity of Antwerp Groenenborgerlaan 171 2020 Antwerp Belgium
| | - Thomas R. Roose
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS)Vrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Eelco Ruijter
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS)Vrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Bert U. W. Maes
- Organic SynthesisDepartment of ChemistryUniversity of Antwerp Groenenborgerlaan 171 2020 Antwerp Belgium
| | - Romano V. A. Orru
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS)Vrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| |
Collapse
|
10
|
Rej S, Ano Y, Chatani N. Bidentate Directing Groups: An Efficient Tool in C-H Bond Functionalization Chemistry for the Expedient Construction of C-C Bonds. Chem Rev 2020; 120:1788-1887. [PMID: 31904219 DOI: 10.1021/acs.chemrev.9b00495] [Citation(s) in RCA: 634] [Impact Index Per Article: 126.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the past decades, synthetic organic chemistry discovered that directing group assisted C-H activation is a key tool for the expedient and siteselective construction of C-C bonds. Among the various directing group strategies, bidentate directing groups are now recognized as one of the most efficient devices for the selective functionalization of certain positions due to fact that its metal center permits fine, tunable, and reversible coordination. The family of bidentate directing groups permit various types of assistance to be achieved, such as N,N-dentate, N,O-dentate, and N,S-dentate auxiliaries, which are categorized based on the coordination site. In this review, we broadly discuss various C-H bond functionalization reactions for the formation of C-C bonds with the aid of bidentate directing groups.
Collapse
Affiliation(s)
- Supriya Rej
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| | - Yusuke Ano
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| |
Collapse
|
11
|
Collet JW, Roose TR, Ruijter E, Maes BUW, Orru RVA. Base Metal Catalyzed Isocyanide Insertions. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905838] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jurriën W. Collet
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS)Vrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
- Organic SynthesisDepartment of ChemistryUniversity of Antwerp Groenenborgerlaan 171 2020 Antwerp Belgium
| | - Thomas R. Roose
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS)Vrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Eelco Ruijter
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS)Vrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Bert U. W. Maes
- Organic SynthesisDepartment of ChemistryUniversity of Antwerp Groenenborgerlaan 171 2020 Antwerp Belgium
| | - Romano V. A. Orru
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS)Vrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| |
Collapse
|
12
|
Miao J, Sang X, Wang Y, Deng S, Hao W. Synthesis of thiazolo[2,3-b]quinazoline derivatives via base-promoted cascade bicyclization of o-alkenylphenyl isothiocyanates with propargylamines. Org Biomol Chem 2019; 17:6994-6997. [PMID: 31298677 DOI: 10.1039/c9ob01098j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly efficient cascade bicyclization reaction of o-alkenylphenyl isothiocyanates with propargylamines has been developed, which affords a series of thiazolo[2,3-b]quinazolines in good to excellent yields by using K2CO3 as a base in MeCN at 80 °C. This method is transition-metal-free and operationally simple with broad functional group tolerance. Mechanistically, 6-exo-trig hydroamination followed by 5-exo-dig hydrothiolation was involved in this transformation.
Collapse
Affiliation(s)
- Jiankang Miao
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, College of Chemistry & Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi 330022, P.R. China.
| | - Xiaoyan Sang
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, College of Chemistry & Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi 330022, P.R. China.
| | - Yi Wang
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, College of Chemistry & Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi 330022, P.R. China.
| | - Shufeng Deng
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, College of Chemistry & Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi 330022, P.R. China.
| | - Wenyan Hao
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, College of Chemistry & Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi 330022, P.R. China.
| |
Collapse
|
13
|
Chen J, Jin L, Zhou J, Jiang X, Yu C. Cobalt-catalyzed electrochemical C H/N H functionalization of N-(quinolin-8-yl)benzamide with isocyanides. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.06.060] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Miao J, Zhang Y, Sang X, Hao W. A silver(i)-catalyzed cascade bicyclization strategy for synthesis of 5H-benzo[d]tetrazolo[5,1-b][1,3]thiazines. Org Biomol Chem 2019; 17:2336-2340. [PMID: 30741301 DOI: 10.1039/c8ob03220c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A simple and efficient protocol for silver(i)-catalyzed tandem reaction of o-alkynylphenyl isothiocyanates with sodium azide has been developed, affording a series of 5H-benzo[d]tetrazolo[5,1-b][1,3]thiazines in moderate to good yields. In this transformation, a [3 + 2] cycloaddition reaction mechanism was involved and two new rings were formed in one pot.
Collapse
Affiliation(s)
- Jiankang Miao
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China.
| | | | | | | |
Collapse
|
15
|
Zhao H, Shao X, Qing Z, Wang T, Chen X, Yang H, Zhai H. Cobalt‐Catalyzed 2‐(1‐Methylhydrazinyl)pyridine‐Assisted Direct C−H/N−H Functionalization of Benzoyl Hydrazide with Isocyanide: Efficient Synthesis of Iminoisoindolinone Derivatives. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801459] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Hua Zhao
- The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and BiotechnologyShenzhen Graduate School of Peking University Shenzhen 518055 People's Republic of China
| | - Xiaoru Shao
- The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and BiotechnologyShenzhen Graduate School of Peking University Shenzhen 518055 People's Republic of China
| | - Zhineng Qing
- The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and BiotechnologyShenzhen Graduate School of Peking University Shenzhen 518055 People's Republic of China
| | - Taimin Wang
- The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and BiotechnologyShenzhen Graduate School of Peking University Shenzhen 518055 People's Republic of China
| | - Xiaoming Chen
- The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and BiotechnologyShenzhen Graduate School of Peking University Shenzhen 518055 People's Republic of China
| | - Hongjian Yang
- The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and BiotechnologyShenzhen Graduate School of Peking University Shenzhen 518055 People's Republic of China
| | - Hongbin Zhai
- The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and BiotechnologyShenzhen Graduate School of Peking University Shenzhen 518055 People's Republic of China
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300071 People's Republic of China
| |
Collapse
|
16
|
Ma P, Chen H. Ligand-Dependent Multi-State Reactivity in Cobalt(III)-Catalyzed C–H Activations. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04532] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Pengchen Ma
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hui Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
17
|
Harper AD, Aitken RA. The Chemistry of Thieno[c]pyrrolones, Dihydrothieno[c]pyrrolones, and Their Fused Derivatives. ADVANCES IN HETEROCYCLIC CHEMISTRY 2019. [DOI: 10.1016/bs.aihch.2018.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
18
|
Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. 3d Transition Metals for C-H Activation. Chem Rev 2018; 119:2192-2452. [PMID: 30480438 DOI: 10.1021/acs.chemrev.8b00507] [Citation(s) in RCA: 1516] [Impact Index Per Article: 216.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
C-H activation has surfaced as an increasingly powerful tool for molecular sciences, with notable applications to material sciences, crop protection, drug discovery, and pharmaceutical industries, among others. Despite major advances, the vast majority of these C-H functionalizations required precious 4d or 5d transition metal catalysts. Given the cost-effective and sustainable nature of earth-abundant first row transition metals, the development of less toxic, inexpensive 3d metal catalysts for C-H activation has gained considerable recent momentum as a significantly more environmentally-benign and economically-attractive alternative. Herein, we provide a comprehensive overview on first row transition metal catalysts for C-H activation until summer 2018.
Collapse
Affiliation(s)
- Parthasarathy Gandeepan
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Thomas Müller
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Daniel Zell
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Gianpiero Cera
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Svenja Warratz
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| |
Collapse
|
19
|
Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BUW, Schnürch M. A comprehensive overview of directing groups applied in metal-catalysed C-H functionalisation chemistry. Chem Soc Rev 2018; 47:6603-6743. [PMID: 30033454 PMCID: PMC6113863 DOI: 10.1039/c8cs00201k] [Citation(s) in RCA: 1150] [Impact Index Per Article: 164.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Indexed: 12/20/2022]
Abstract
The present review is devoted to summarizing the recent advances (2015-2017) in the field of metal-catalysed group-directed C-H functionalisation. In order to clearly showcase the molecular diversity that can now be accessed by means of directed C-H functionalisation, the whole is organized following the directing groups installed on a substrate. Its aim is to be a comprehensive reference work, where a specific directing group can be easily found, together with the transformations which have been carried out with it. Hence, the primary format of this review is schemes accompanied with a concise explanatory text, in which the directing groups are ordered in sections according to their chemical structure. The schemes feature typical substrates used, the products obtained as well as the required reaction conditions. Importantly, each example is commented on with respect to the most important positive features and drawbacks, on aspects such as selectivity, substrate scope, reaction conditions, directing group removal, and greenness. The targeted readership are both experts in the field of C-H functionalisation chemistry (to provide a comprehensive overview of the progress made in the last years) and, even more so, all organic chemists who want to introduce the C-H functionalisation way of thinking for a design of straightforward, efficient and step-economic synthetic routes towards molecules of interest to them. Accordingly, this review should be of particular interest also for scientists from industrial R&D sector. Hence, the overall goal of this review is to promote the application of C-H functionalisation reactions outside the research groups dedicated to method development and establishing it as a valuable reaction archetype in contemporary R&D, comparable to the role cross-coupling reactions play to date.
Collapse
Affiliation(s)
- Carlo Sambiagio
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - David Schönbauer
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Remi Blieck
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Toan Dao-Huy
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Gerit Pototschnig
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Patricia Schaaf
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Thomas Wiesinger
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Muhammad Farooq Zia
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Joanna Wencel-Delord
- Laboratoire de Chimie Moléculaire (UMR CNRS 7509)
, Université de Strasbourg
,
ECPM 25 Rue Becquerel
, 67087 Strasbourg
, France
| | - Tatiana Besset
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Bert U. W. Maes
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| |
Collapse
|
20
|
Qiu S, Zhai S, Wang H, Tao C, Zhao H, Zhai H. Efficient Synthesis of Phthalimides via Cobalt-Catalyzed C(sp
2
)−H Carbonylation of Benzoyl Hydrazides with Carbon Monoxide. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800388] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shuxian Qiu
- The State Key Laboratory of Chemical Oncogenomics and the Key Laboratory of Chemical Genomics; Shenzhen Graduate School of Peking University; Shenzhen 518055 People's Republic of China
| | - Shengxian Zhai
- The State Key Laboratory of Chemical Oncogenomics and the Key Laboratory of Chemical Genomics; Shenzhen Graduate School of Peking University; Shenzhen 518055 People's Republic of China
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 People's Republic of China
| | - Huifei Wang
- The State Key Laboratory of Chemical Oncogenomics and the Key Laboratory of Chemical Genomics; Shenzhen Graduate School of Peking University; Shenzhen 518055 People's Republic of China
| | - Cheng Tao
- The State Key Laboratory of Chemical Oncogenomics and the Key Laboratory of Chemical Genomics; Shenzhen Graduate School of Peking University; Shenzhen 518055 People's Republic of China
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 People's Republic of China
| | - Hua Zhao
- The State Key Laboratory of Chemical Oncogenomics and the Key Laboratory of Chemical Genomics; Shenzhen Graduate School of Peking University; Shenzhen 518055 People's Republic of China
| | - Hongbin Zhai
- The State Key Laboratory of Chemical Oncogenomics and the Key Laboratory of Chemical Genomics; Shenzhen Graduate School of Peking University; Shenzhen 518055 People's Republic of China
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering; Tianjin) China
| |
Collapse
|
21
|
Kumar KS, Rajesham B, Kumar NP, Ramulu MS, Dandela R. A Ligand/Additive/Base-Free C(sp2
)-H Activation and Isocyanide Insertion in PEG-400: Synthesis of Indolizine/Imidazoline-Fused Heterocycles. ChemistrySelect 2018. [DOI: 10.1002/slct.201800397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- K. Shiva Kumar
- Department of chemistry; Osmania University; Hyderabad-500 007 India
| | - Bandari Rajesham
- Department of chemistry; Osmania University; Hyderabad-500 007 India
| | - N. Praveen Kumar
- Department of chemistry; Osmania University; Hyderabad-500 007 India
| | | | - Rambabu Dandela
- Organic Chemistry Division; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road Pune-411008 India
| |
Collapse
|
22
|
Kalsi D, Barsu N, Sundararaju B. CoIII
-Catalyzed Isonitrile Insertion/Acyl Group Migration Between C−H and N−H bonds of Arylamides. Chemistry 2018; 24:2360-2364. [DOI: 10.1002/chem.201705710] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Deepti Kalsi
- Fine Chemical Laboratory, Department of Chemistry; Indian Institute of Technology Kanpur; Uttar Pradesh India
| | - Nagaraju Barsu
- Fine Chemical Laboratory, Department of Chemistry; Indian Institute of Technology Kanpur; Uttar Pradesh India
| | - Basker Sundararaju
- Fine Chemical Laboratory, Department of Chemistry; Indian Institute of Technology Kanpur; Uttar Pradesh India
| |
Collapse
|
23
|
Prakash S, Kuppusamy R, Cheng CH. Cobalt-Catalyzed Annulation Reactions via C−H Bond Activation. ChemCatChem 2018. [DOI: 10.1002/cctc.201701559] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sekar Prakash
- Department of Chemistry; National Tsing Hua University; Hsinchu 30013 Taiwan
| | - Ramajayam Kuppusamy
- Department of Chemistry; National Tsing Hua University; Hsinchu 30013 Taiwan
| | - Chien-Hong Cheng
- Department of Chemistry; National Tsing Hua University; Hsinchu 30013 Taiwan
| |
Collapse
|
24
|
Planas O, Chirila PG, Whiteoak CJ, Ribas X. Current Mechanistic Understanding of Cobalt-Catalyzed C–H Functionalization. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2018. [DOI: 10.1016/bs.adomc.2018.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Ujwaldev SM, Harry NA, Divakar MA, Anilkumar G. Cobalt-catalyzed C–H activation: recent progress in heterocyclic chemistry. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01418c] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cobalt-catalyzed C–H activation has gone through some major advancements in the past couple of decades.
Collapse
Affiliation(s)
| | - Nissy Ann Harry
- School of Chemical Sciences
- Mahatma Gandhi University
- Kottayam
- India 686560
| | | | - Gopinathan Anilkumar
- School of Chemical Sciences
- Mahatma Gandhi University
- Kottayam
- India 686560
- Advanced Molecular Materials Research Centre (AMMRC)
| |
Collapse
|
26
|
Kommagalla Y, Chatani N. Cobalt(II)-catalyzed C H functionalization using an N,N′-bidentate directing group. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.06.018] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Kuai C, Wang L, Li B, Yang Z, Cui X. Cobalt-Catalyzed Selective Synthesis of Isoquinolines Using Picolinamide as a Traceless Directing Group. Org Lett 2017; 19:2102-2105. [DOI: 10.1021/acs.orglett.7b00702] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Changsheng Kuai
- Engineering Research Center
of Molecular Medicine of Ministry of Education, Key Laboratory of
Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene
Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| | - Lianhui Wang
- Engineering Research Center
of Molecular Medicine of Ministry of Education, Key Laboratory of
Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene
Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| | - Bobin Li
- Engineering Research Center
of Molecular Medicine of Ministry of Education, Key Laboratory of
Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene
Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| | - Zhenhui Yang
- Engineering Research Center
of Molecular Medicine of Ministry of Education, Key Laboratory of
Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene
Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| | - Xiuling Cui
- Engineering Research Center
of Molecular Medicine of Ministry of Education, Key Laboratory of
Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene
Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| |
Collapse
|
28
|
Yoshino T, Matsunaga S. (Pentamethylcyclopentadienyl)cobalt(III)-Catalyzed C-H Bond Functionalization: From Discovery to Unique Reactivity and Selectivity. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700042] [Citation(s) in RCA: 356] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences; Hokkaido University; Sapporo 060-0812 Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences; Hokkaido University; Sapporo 060-0812 Japan
| |
Collapse
|
29
|
High-Valent Cobalt-Catalyzed C H Bond Functionalization. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2017. [DOI: 10.1016/bs.adomc.2017.07.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|