1
|
Ali R, Ahmed W, Jayant V, alvi S, Ahmed N, Ahmed A. Metathesis reactions in total‐ and natural product fragments syntheses. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rashid Ali
- Jamia Millia Islamia New Delhi India 110025 Department of Chemistry Jamia Nagar,New Delhi india110025 110025 New Delhi INDIA
| | - Waqar Ahmed
- Jamia Millia Islamia Central University: Jamia Millia Islamia Chemistry INDIA
| | - Vikrant Jayant
- Jamia Millia Islamia Central University: Jamia Millia Islamia Chemistry INDIA
| | - shakeel alvi
- Jamia Millia Islamia Central University: Jamia Millia Islamia Chemistry INDIA
| | - Nadeem Ahmed
- Jamia Millia Islamia Central University: Jamia Millia Islamia Chemistry INDIA
| | - Azeem Ahmed
- Jamia Millia Islamia Central University: Jamia Millia Islamia Chemistry INDIA
| |
Collapse
|
2
|
Espinoza RV, Haatveit KC, Grossman SW, Tan JY, McGlade CA, Khatri Y, Newmister SA, Schmidt JJ, Garcia-Borràs M, Montgomery J, Houk KN, Sherman DH. Engineering P450 TamI as an Iterative Biocatalyst for Selective Late-Stage C-H Functionalization and Epoxidation of Tirandamycin Antibiotics. ACS Catal 2021; 11:8304-8316. [PMID: 35003829 DOI: 10.1021/acscatal.1c01460] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Iterative P450 enzymes are powerful biocatalysts for selective late-stage C-H oxidation of complex natural product scaffolds. These enzymes represent useful tools for selectivity and cascade reactions, facilitating direct access to core structure diversification. Recently, we reported the structure of the multifunctional bacterial P450 TamI and elucidated the molecular basis of its substrate binding and strict reaction sequence at distinct carbon atoms of the substrate. Here, we report the design and characterization of a toolbox of TamI biocatalysts, generated by mutations at Leu101, Leu244, and/or Leu295, that alter the native selectivity, step sequence, and number of reactions catalyzed, including the engineering of a variant capable of catalyzing a four-step oxidative cascade without the assistance of the flavoprotein and oxidative partner TamL. The tuned enzymes override inherent substrate reactivity, enabling catalyst-controlled C-H functionalization and alkene epoxidation of the tetramic acid-containing natural product tirandamycin. Five bioactive tirandamycin derivatives (6-10) were generated through TamI-mediated enzymatic synthesis. Quantum mechanics calculations and MD simulations provide important insights into the basis of altered selectivity and underlying biocatalytic mechanisms for enhanced continuous oxidation of the iterative P450 TamI.
Collapse
Affiliation(s)
- Rosa V Espinoza
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States; Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kersti Caddell Haatveit
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - S Wald Grossman
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jin Yi Tan
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Caylie A McGlade
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yogan Khatri
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sean A Newmister
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jennifer J Schmidt
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Marc Garcia-Borràs
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - John Montgomery
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - David H Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States; Department of Medicinal Chemistry, Department of Chemistry, and Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Chanadech S, Ruen-Ngam D, Intaraudom C, Pittayakhajonwut P, Chongruchiroj S, Pratuangdejkul J, Thawai C. Isolation of manumycin-type derivatives and genome characterization of a marine Streptomyces sp. C1-2. Res Microbiol 2021; 172:103812. [PMID: 33497762 DOI: 10.1016/j.resmic.2021.103812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 01/04/2021] [Accepted: 01/15/2021] [Indexed: 11/18/2022]
Abstract
A marine actinomycete strain C1-2 was taxonomically characterized as the genus Streptomyces, based on whole-genome sequence analysis. The highest average nucleotide identity (ANI) value (98.96%) and digital DNA-DNA hybridization (DDH) value (90.4%) were observed between Streptomyces sp. C1-2 and Streptomyces griseoaurantiacus. Thus, Streptomyces sp. C1-2 could be identified as S. griseoaurantiacus. Genome analysis revealed that Streptomyces sp. C1-2 contained 22 biosynthetic gene clusters (BGCs) for secondary metabolites, where among them, 54% have low similarities with known BGCs. The chemical investigation led to the isolation of three new manumycin-type derivatives and two known analog antibiotics named SW-B and cornifronin B. All compounds showed antioxidant activity with the half-maximal inhibitory concentration (IC50) values in a range of 50.82 ± 0.8-112.04 ± 1.0 μg/mL with no cytotoxicity against Vero cells. This is the first report of the antioxidant property of manumycin-type derivatives. Moreover, two known compounds exhibited antifungal activity against Phytophthora capsici, Fusarium oxysporum f. sp. cucumerinum, and Magnaporthe grisea, with the minimum inhibitory concentration (MIC) values in a range of 125-500 μg/mL.
Collapse
Affiliation(s)
- Sakkarn Chanadech
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Duangkamol Ruen-Ngam
- Rattanakosin College for Sustainable Energy and Environment (RCSEE), Rajamangala University of Technology Rattanakosin, Nakhon Pathom, 73170, Thailand
| | - Chakapong Intaraudom
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, Pathum Thani, 12120, Thailand
| | - Pattama Pittayakhajonwut
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, Pathum Thani, 12120, Thailand
| | - Sumet Chongruchiroj
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Phayathai, Bangkok 10400, Thailand
| | - Jaturong Pratuangdejkul
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Phayathai, Bangkok 10400, Thailand
| | - Chitti Thawai
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand; Actinobacterial Research Unit, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
| |
Collapse
|