1
|
Ghosh AK, Lee D, Sharma A, Johnson ME, Ghosh AK, Wang YF, Agniswamy J, Amano M, Hattori SI, Weber IT, Mitsuya H. Design of substituted tetrahydrofuran derivatives for HIV-1 protease inhibitors: synthesis, biological evaluation, and X-ray structural studies. Org Biomol Chem 2024; 22:7354-7372. [PMID: 38973505 PMCID: PMC11957373 DOI: 10.1039/d4ob00506f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Substituted tetrahydrofuran derivatives were designed and synthesized to serve as the P2 ligand for a series of potent HIV-1 protease inhibitors. Both enantiomers of the tetrahydrofuran derivatives were synthesized stereoselectivity in optically active forms using lipase-PS catalyzed enzymatic resolution as the key step. These tetrahydrofuran derivatives are designed to promote hydrogen bonding and van der Waals interactions with the backbone atoms in the S2 subsite of the HIV-1 protease active site. Several inhibitors displayed very potent HIV-1 protease inhibitory activity. A high-resolution X-ray crystal structure of an inhibitor-bound HIV-1 protease provided important insight into the ligand binding site interactions in the active site.
Collapse
Affiliation(s)
- Arun K Ghosh
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| | - Daniel Lee
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
| | - Ashish Sharma
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
| | - Megan E Johnson
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
| | - Ajay K Ghosh
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
| | - Yuan-Fang Wang
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | - Johnson Agniswamy
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | - Masayuki Amano
- Departments of Infectious Diseases and Hematology, Kumamoto University Graduate School of Biomedical Sciences, Kumamoto 860-8556, Japan
| | - Shin-Ichiro Hattori
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Irene T Weber
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | - Hiroaki Mitsuya
- Departments of Infectious Diseases and Hematology, Kumamoto University Graduate School of Biomedical Sciences, Kumamoto 860-8556, Japan
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Arcile G, Retailleau P, Ouazzani J, Betzer J. Total Synthesis of the Fungal Metabolite Trienylfuranol A through Nucleophilic Diastereodivergent Additions to Oxocarbenium Ions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Guillaume Arcile
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301 Université Paris-Saclay 1 avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301 Université Paris-Saclay 1 avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Jamal Ouazzani
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301 Université Paris-Saclay 1 avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Jean‐Francois Betzer
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301 Université Paris-Saclay 1 avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| |
Collapse
|
3
|
Ghosh AK, Lee DS. Enantioselective Total Synthesis of (+)-Monocerin, a Dihydroisocoumarin Derivative with Potent Antimalarial Properties. J Org Chem 2019; 84:6191-6198. [PMID: 31033292 PMCID: PMC6637414 DOI: 10.1021/acs.joc.9b00414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe here the enantioselective synthesis of (+)-monocerin and its acetate derivative. The present synthesis features an efficient optically active synthesis of the β-hydroxy-γ-lactone derivative with high enantiomeric purity using Sharpless dihydroxylation as the key step. The synthesis also highlights a tandem Lewis acid-catalyzed, oxocarbenium ion-mediated diastereoselective syn-allylation reaction, and a methoxymethyl group promoted methylenation reaction. We investigated this reaction with a variety of Lewis acids. A selective CrO3-mediated oxidation of isochroman provided the corresponding lactone derivative. The synthesis is quite efficient and may be useful for the preparation of derivatives.
Collapse
Affiliation(s)
- Arun K. Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907
| | - Daniel S. Lee
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907
| |
Collapse
|
4
|
Heravi MM, Mohammadkhani L. Recent applications of Stille reaction in total synthesis of natural products: An update. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.05.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Recent examples of the use of biocatalysts with high accessibility and availability in natural product synthesis. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.05.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Albarrán-Velo J, González-Martínez D, Gotor-Fernández V. Stereoselective biocatalysis: A mature technology for the asymmetric synthesis of pharmaceutical building blocks. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1340457] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jesús Albarrán-Velo
- Organic and Inorganic Chemistry Department, Biotechnology Institute of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| | - Daniel González-Martínez
- Organic and Inorganic Chemistry Department, Biotechnology Institute of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| | - Vicente Gotor-Fernández
- Organic and Inorganic Chemistry Department, Biotechnology Institute of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| |
Collapse
|