1
|
Laglera-Gándara CJ, Jiménez-Rioboó R, Álvarez-Rodríguez L, Peloso R, Ríos P, Rodríguez A. Nickel-Catalyzed Deuteration of Primary, Secondary, and Tertiary Silanes: Scope and Mechanistic Insights. J Org Chem 2025; 90:5206-5212. [PMID: 40198819 DOI: 10.1021/acs.joc.5c00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Deuterated silanes are crucial reagents for deuteration, with a diverse range of applications in materials science, pharmaceuticals, and isotopic labeling. While most methods for synthesizing deuterated silanes rely on stoichiometric environmentally harmful processes or noble metal catalysts, research into more sustainable alternatives has received relatively less attention. In this study, we introduce a catalyst based on a nickel PBP-pincer system (PBP = bis(phosphino)boryl), which effectively facilitates catalytic hydrogen/deuterium exchange for primary, secondary, and tertiary silanes, as well as tertiary siloxanes and certain boranes, utilizing a catalyst loading of 2 mol % at 25 °C. DFT calculations identify two reaction pathways that require overcoming similar energy barriers for the H/D exchange step: silane activation assisted by the PBP ligand (ΔG⧧ = 24.1 kcal mol-1) and H/D exchange promoted by nucleophilic Ni-hydride (ΔG⧧ = 22.4 kcal mol-1). These results suggest that both pathways are feasible, with a slight energetic preference for the latter. We also present detailed mechanistic studies, including control experiments, an analysis of catalyst deactivation pathways, and kinetic studies that are in excellent agreement with the outcome of the theoretical calculations.
Collapse
Affiliation(s)
- Carlos J Laglera-Gándara
- Instituto de Investigaciones Químicas, Departamento de Química Inorgánica, CSIC and Universidad de Sevilla, Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, Sevilla 41092, Spain
| | - Rafael Jiménez-Rioboó
- Instituto de Investigaciones Químicas, Departamento de Química Inorgánica, CSIC and Universidad de Sevilla, Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, Sevilla 41092, Spain
| | - Lucía Álvarez-Rodríguez
- Instituto de Investigaciones Químicas, Departamento de Química Inorgánica, CSIC and Universidad de Sevilla, Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, Sevilla 41092, Spain
| | - Riccardo Peloso
- Instituto de Investigaciones Químicas, Departamento de Química Inorgánica, CSIC and Universidad de Sevilla, Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, Sevilla 41092, Spain
| | - Pablo Ríos
- Instituto de Investigaciones Químicas, Departamento de Química Inorgánica, CSIC and Universidad de Sevilla, Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, Sevilla 41092, Spain
| | - Amor Rodríguez
- Instituto de Investigaciones Químicas, Departamento de Química Inorgánica, CSIC and Universidad de Sevilla, Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, Sevilla 41092, Spain
| |
Collapse
|
2
|
Gregori BJ, Schmotz MWS, Jacobi von Wangelin A. Stereoselective Semi-Hydrogenations of Alkynes by First-Row (3d) Transition Metal Catalysts. ChemCatChem 2022; 14:e202200886. [PMID: 36632425 PMCID: PMC9825939 DOI: 10.1002/cctc.202200886] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Indexed: 01/14/2023]
Abstract
The chemo- and stereoselective semi-hydrogenation of alkynes to alkenes is a fundamental transformation in synthetic chemistry, for which the use of precious 4d or 5d metal catalysts is well-established. In mankind's unwavering quest for sustainability, research focus has considerably veered towards the 3d metals. Given their high abundancy and availability as well as lower toxicity and noxiousness, they are undoubtedly attractive from both an economic and an environmental perspective. Herein, we wish to present noteworthy and groundbreaking examples for the use of 3d metal catalysts for diastereoselective alkyne semi-hydrogenation as we embark on a journey through the first-row transition metals.
Collapse
Affiliation(s)
- Bernhard J. Gregori
- Dept. of ChemistryUniversity of HamburgMartin Luther King Pl 620146HamburgGermany
| | | | | |
Collapse
|
3
|
Recent advances in the boration and cyanation functionalization of alkenes and alkynes. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Linford-Wood TG, Mahon MF, Grayson MN, Webster RL. Iron-Catalyzed H/D Exchange of Primary Silanes, Secondary Silanes, and Tertiary Siloxanes. ACS Catal 2022; 12:2979-2985. [PMID: 35433105 PMCID: PMC9007460 DOI: 10.1021/acscatal.2c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Indexed: 11/28/2022]
Abstract
![]()
A synthetic
study into the catalytic hydrogen/deuterium (H/D) exchange
of 1° silanes, 2° silanes, and 3° siloxanes is presented,
facilitated by iron-β-diketiminato complexes (1a and 1b). Near-complete H/D exchange is observed for
a variety of aryl- and alkyl-containing hydrosilanes and hydrosiloxanes.
The reaction tolerates alternative hydride source pinacolborane (HBpin),
with quantitative H/D exchange. A synthetic and density functional
theory (DFT) investigation suggests that a monomeric iron-deuteride
is responsible for the H/D exchange.
Collapse
Affiliation(s)
| | - Mary F. Mahon
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Matthew N. Grayson
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Ruth L. Webster
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| |
Collapse
|
5
|
Bose SK, Mao L, Kuehn L, Radius U, Nekvinda J, Santos WL, Westcott SA, Steel PG, Marder TB. First-Row d-Block Element-Catalyzed Carbon-Boron Bond Formation and Related Processes. Chem Rev 2021; 121:13238-13341. [PMID: 34618418 DOI: 10.1021/acs.chemrev.1c00255] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Organoboron reagents represent a unique class of compounds because of their utility in modern synthetic organic chemistry, often affording unprecedented reactivity. The transformation of the carbon-boron bond into a carbon-X (X = C, N, and O) bond in a stereocontrolled fashion has become invaluable in medicinal chemistry, agrochemistry, and natural products chemistry as well as materials science. Over the past decade, first-row d-block transition metals have become increasingly widely used as catalysts for the formation of a carbon-boron bond, a transformation traditionally catalyzed by expensive precious metals. This recent focus on alternative transition metals has enabled growth in fundamental methods in organoboron chemistry. This review surveys the current state-of-the-art in the use of first-row d-block element-based catalysts for the formation of carbon-boron bonds.
Collapse
Affiliation(s)
- Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India
| | - Lujia Mao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, 571199 Haikou, Hainan, P. R. China
| | - Laura Kuehn
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jan Nekvinda
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Stephen A Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Patrick G Steel
- Department of Chemistry, University of Durham, Science Laboratories South Road, Durham DH1 3LE, U.K
| | - Todd B Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
6
|
Esteruelas MA, Martínez A, Oliván M, Vélez A. A General Rhodium Catalyst for the Deuteration of Boranes and Hydrides of the Group 14 Elements. J Org Chem 2020; 85:15693-15698. [PMID: 33155805 DOI: 10.1021/acs.joc.0c01967] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pinacolborane, catecholborane, triethylsilane, triphenylsilane, dimethylphenylsilane, 1,1,1,3,5,5,5-heptamethyltrisiloxane, triethylgermane, triphenylgermane, and triphenylstannane deuterated at the heteroatom position have been catalytically prepared in 50-70% isolated yield, through H/D exchange between the D2 molecule and the respective boranes and hydrides of the group 14 elements, in the presence of the rhodium(I)-monohydride catalyst precursor RhH{κ3-P,O,P-[xant(PiPr2)2]} (xant(PiPr2)2 = 9,9-dimethyl-4,5-bis(diisopropylphosphino)xanthene).
Collapse
Affiliation(s)
- Miguel A Esteruelas
- Departamento de Química Inorgánica - Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) - Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza - CSIC, 50009 Zaragoza, Spain
| | - Antonio Martínez
- Departamento de Química Inorgánica - Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) - Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza - CSIC, 50009 Zaragoza, Spain
| | - Montserrat Oliván
- Departamento de Química Inorgánica - Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) - Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza - CSIC, 50009 Zaragoza, Spain
| | - Andrea Vélez
- Departamento de Química Inorgánica - Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) - Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza - CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
7
|
Dawe LN, Karimzadeh-Younjali M, Dai Z, Khaskin E, Gusev DG. The Milstein Bipyridyl PNN Pincer Complex of Ruthenium Becomes a Noyori-Type Catalyst under Reducing Conditions. J Am Chem Soc 2020; 142:19510-19522. [DOI: 10.1021/jacs.0c06518] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Louise N. Dawe
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | | | - Zengjin Dai
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Eugene Khaskin
- Okinawa Institute of Science and Technology, Okinawa 904-0495, Japan
| | - Dmitry G. Gusev
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| |
Collapse
|
8
|
|