1
|
Li J, Dong Z, Chen Y, Yang Z, Yan X, Wang M, Li C, Zhao C. N-Heterocyclic carbene-catalyzed enantioselective synthesis of planar-chiral cyclophanes via dynamic kinetic resolution. Nat Commun 2024; 15:2338. [PMID: 38491016 PMCID: PMC10943026 DOI: 10.1038/s41467-024-46376-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/23/2024] [Indexed: 03/18/2024] Open
Abstract
Planar-chiral cyclophanes have gained considerable concerns for drug discovery due to their unique conformational strain and 3D structure. However, the enantioselective synthesis of planar-chiral cyclophanes is a long-standing challenge for the synthetic community. We herein describe an N-heterocyclic carbene (NHC)-catalyzed asymmetric construction of planar-chiral cyclophanes. This transformation occurs through a dynamic kinetic resolution (DKR) process to convert racemic substrates into planar-chiral macrocycle scaffolds in good to high yields with high to excellent enantioselectivities. The ansa chain length and aromatic ring substituent size is crucial to achieve the DKR approach. Controlled experiments and DFT calculations were performed to clarify the DKR process.
Collapse
Affiliation(s)
- Jiayan Li
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Ziyang Dong
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yang Chen
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhanhui Yang
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinen Yan
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Meng Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Chenyang Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Changgui Zhao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
2
|
Dong Z, Li J, Yao T, Zhao C. Palladium-Catalyzed Enantioselective C-H Olefination to Access Planar-Chiral Cyclophanes by Dynamic Kinetic Resolution. Angew Chem Int Ed Engl 2023:e202315603. [PMID: 37919238 DOI: 10.1002/anie.202315603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/04/2023]
Abstract
Planar-chiral cyclophanes have received increasing attention for drug discovery and catalyst design. However, the catalytically asymmetric synthesis of planar-chiral cyclophanes has been a longstanding challenge. We describe the first Pd(II)-catalyzed enantioselective C-H olefination of prochiral cyclophanes. The low rotational barrier of less hindered benzene ring in the substrates allows the reaction to proceed through a dynamic kinetic resolution. This approach exhibits broad substrate scope, providing the planar-chiral cyclophanes in high yields (up to 99 %) with excellent enantioselectivities (up to >99 % ee). The ansa chain length scope studies reveal that the chirality of the cyclophanes arises from the bond rotation constraint of the benzene ring around the macrocycle plane, rather than the C-N axis. The C-H activation approach is also applicable to the late-stage modification of bioactive molecules and pharmaceuticals.
Collapse
Affiliation(s)
- Ziyang Dong
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875 (P. R., China
| | - Jia Li
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875 (P. R., China
| | - Ting Yao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875 (P. R., China
| | - Changgui Zhao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875 (P. R., China
| |
Collapse
|
3
|
Kim B, Puthukanoori RK, Martha B, Reddy Muthyala N, Thota S, Thummala V, Rao Paraselli B, Chen DYK. Stereo-Controlled Synthesis of Vicinal Tertiary Carbinols: Application in the Synthesis of a Diol Substructure of Zaragozic Acid, Pactamycin and Ryanodol. Chemistry 2023; 29:e202301938. [PMID: 37395682 DOI: 10.1002/chem.202301938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/04/2023]
Abstract
A novel and flexible approach for the stereo-controlled synthesis of vicinal tertiary carbinols is reported. The developed strategy featured a highly diastereoselective singlet-oxygen (O2 1 ) [4+2] cycloaddition of rationally designed cyclohexadienones (derived from oxidative dearomatization of the corresponding carboxylic-acid appended phenol precursors), followed by programmed "O-O" and "C-C" bond cleavage. In doing so, a highly functionalized and versatile intermediate was identified and prepared in synthetically useful quantity as a plausible precursor to access a variety of designed and naturally occurring vicinal tertiary carbinol containing compounds. Most notably, the developed strategy was successfully applied in the stereo-controlled synthesis of advanced core structures of zaragozic acid, pactamycin and ryanodol.
Collapse
Affiliation(s)
- Byungjoo Kim
- Department of Chemistry, Seoul National University, Gwanak-1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | | | | | | | - Srinivas Thota
- Chemveda Life Sciences, Pvt. Ltd., Hyderabad, Telangana, 500039, India
| | | | | | - David Y-K Chen
- Department of Chemistry, Seoul National University, Gwanak-1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| |
Collapse
|
4
|
Sihag M, Soni R, Rani N, Kinger M, Kumar Aneja D. Recent Synthetic Applications of Hypervalent Iodine Reagents. A Review in Three Installments: Installment I. ORG PREP PROCED INT 2022. [DOI: 10.1080/00304948.2022.2113964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Affiliation(s)
- Monika Sihag
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Rinku Soni
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Neha Rani
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Mayank Kinger
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Deepak Kumar Aneja
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| |
Collapse
|
5
|
Tang P, Wen L, Ma HJ, Yang Y, Jiang Y. Synthesis of acyloxy-2 H-azirine and sulfonyloxy-2 H-azirine derivatives via a one-pot reaction of β-enamino esters, PIDA and carboxylic acid or sulfonic acid. Org Biomol Chem 2022; 20:3061-3066. [PMID: 35344576 DOI: 10.1039/d2ob00364c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PIDA mediated oxidative acyloxylation/azirination and sulfonyloxylation/azirination of β-enamino esters were investigated. A series of functionalized acyloxy-2H-azirine and sulfonyloxy-2H-azirine derivatives was synthesized in moderate to good yields. This represents the first oxidative sulfonyloxylation/azirination of β-enamino esters with PIDA and sulfonic acid for access to sulfonyloxy-2H-azirine. Hypervalent iodine reagents enable cascade C-O/C-N bond formation. Furthermore, a possible reaction pathway was proposed based on the experimental results.
Collapse
Affiliation(s)
- Pan Tang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Long Wen
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Hao-Jie Ma
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Yi Yang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Yan Jiang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| |
Collapse
|
6
|
Cots E, Rintjema J, Bravo F, Muñiz K. Deciphering the Keys for High Enantioselectivity in Hypervalent Iodine-Catalyzed 1,2-Difunctionalization: Improved Synthesis of Ishihara-Muñiz Precatalysts. Org Lett 2021; 23:6429-6434. [PMID: 34346687 DOI: 10.1021/acs.orglett.1c02252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the course of upscaling the synthesis of enantiopure aryliodine precatalysts, we detected an unreported meso form of the catalysts for the first time. A new scalable route was developed to avoid epimerization of the lactamide arms, providing syntheses of the precatalysts that are both more effective and much less time-consuming. The catalysts obtained with these synthetic procedures have been employed in some published reactions, reaching the maximum ee ever reported.
Collapse
Affiliation(s)
- Eric Cots
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Jeroen Rintjema
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Fernando Bravo
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Kilian Muñiz
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| |
Collapse
|
7
|
Yoshida Y, Ishikawa S, Mino T, Sakamoto M. Bromonium salts: diaryl-λ3-bromanes as halogen-bonding organocatalysts. Chem Commun (Camb) 2021; 57:2519-2522. [DOI: 10.1039/d0cc07733j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bromonium salts have been typically but infrequently used as good leaving groups owing to their high nucleofugality. Herein, we report the synthesis of stable bromonium salts and their first catalytic application, with excellent product yield.
Collapse
Affiliation(s)
- Yasushi Yoshida
- Molecular Chirality Research Center
- Graduate School of Engineering
- Chiba University
- 1-33, Yayoi-cho, Inage-ku
- Chiba-Shi
| | - Seitaro Ishikawa
- Molecular Chirality Research Center
- Graduate School of Engineering
- Chiba University
- 1-33, Yayoi-cho, Inage-ku
- Chiba-Shi
| | - Takashi Mino
- Molecular Chirality Research Center
- Graduate School of Engineering
- Chiba University
- 1-33, Yayoi-cho, Inage-ku
- Chiba-Shi
| | - Masami Sakamoto
- Molecular Chirality Research Center
- Graduate School of Engineering
- Chiba University
- 1-33, Yayoi-cho, Inage-ku
- Chiba-Shi
| |
Collapse
|
8
|
Zheng H, Xue XS. Recent Computational Studies on Mechanisms of Hypervalent Iodine(III)-Promoted Dearomatization of Phenols. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200620223218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypervalent iodine-promoted dearomatization of phenols has received intense
attention. This mini-review summarizes recent computational mechanistic studies of phenolic
dearomatizations promoted by hypervalent iodine(III) reagents or catalysts. The first part
of this review describes mechanisms of racemic dearomatization of phenols, paying special
attention to the associative and dissociative pathways. The second part focuses on mechanisms
and selectivities of diastereo- or enantio-selective dearomatization of phenols.
Collapse
Affiliation(s)
- Hanliang Zheng
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiao-Song Xue
- College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
9
|
Abazid AH, Nachtsheim BJ. A Triazole-Substituted Aryl Iodide with Omnipotent Reactivity in Enantioselective Oxidations. Angew Chem Int Ed Engl 2020; 59:1479-1484. [PMID: 31600009 PMCID: PMC7003988 DOI: 10.1002/anie.201912023] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/10/2019] [Indexed: 12/29/2022]
Abstract
A widely applicable triazole‐substituted chiral aryl iodide is described as catalyst for enantioselective oxidation reactions. The introduction of a substituent in ortho‐position to the iodide is key for its high reactivity and selectivity. Besides a robust and modular synthesis, the main advantage of this catalyst is the excellent performance in a plethora of mechanistically diverse enantioselective transformations, such as spirocyclizations, phenol dearomatizations, α‐oxygenations, and oxidative rearrangements. DFT‐calculations of in situ generated [hydroxy(tosyloxy)iodo]arene isomers give an initial rational for the observed reactivity.
Collapse
Affiliation(s)
- Ayham H Abazid
- Institut für Organische und Analytische Chemie, Universität Bremen, Leobener Straße 7, 28359, Bremen, Germany
| | - Boris J Nachtsheim
- Institut für Organische und Analytische Chemie, Universität Bremen, Leobener Straße 7, 28359, Bremen, Germany
| |
Collapse
|
10
|
A Triazole‐Substituted Aryl Iodide with Omnipotent Reactivity in Enantioselective Oxidations. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|