1
|
Pupavac D, Nikolić AM, Webster JP, Curtis TP, And Elković B, Newhouse TR, Opsenica IM. Computational Rational Design of Bridgehead Nitrogen Heterocyclic Azobenzene Photoswitches. J Org Chem 2025. [PMID: 40371946 DOI: 10.1021/acs.joc.5c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Azobenzenes are proven to be one of the most successful molecular photoswitches applied across different fields such as organic chemistry, material science, cosmetics, and pharmaceuticals. Such a widespread implementation is possible because of their photochromic properties contingent upon the substitution pattern and aryl-core nature. In recent endeavors of molecular design, replacing one or both phenyl rings with heteroaromatics turned out to be a good strategy to access compounds with improved photoswitching properties, as well as to expand molecular diversity. One of the challenges related to the design of new azobenzene photoswitches is that it often includes the synthesis of large libraries of compounds due to limited methods for prediction of their properties. Herein, we present a computationally driven workflow for the design and synthesis of a novel class of azobenzene photoswitches, heteroaryl azobenzenes with N-bridgehead heterocycles─pyrazolo[1,5-a]pyrimidine and 1,2,4-triazolo[1,5-a]pyrimidine. A small library of heteroaryl photoswitches was synthesized, and their photochemical properties were evaluated. Subsequently, these results were used to validate a computational approach, which included the in silico evaluation of a large library of designed photoswitch candidates leading to the synthesis of a new photoswitch with improved spectral properties, red-shifted λmax values.
Collapse
Affiliation(s)
- Dunja Pupavac
- Innovative Centre, Faculty of Chemistry, Ltd., Studentski Trg 12-16, 11158 Belgrade, Serbia
| | - Andrea M Nikolić
- University of Belgrade, Faculty of Chemistry, P.O. Box 51, Studentski Trg 16, 11158 Belgrade, Serbia
| | - John-Paul Webster
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Theodore P Curtis
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Boban And Elković
- University of Belgrade, Faculty of Chemistry, P.O. Box 51, Studentski Trg 16, 11158 Belgrade, Serbia
| | - Timothy R Newhouse
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Igor M Opsenica
- University of Belgrade, Faculty of Chemistry, P.O. Box 51, Studentski Trg 16, 11158 Belgrade, Serbia
| |
Collapse
|
2
|
Gernet A, Balivet L, El Rhaz A, Pagès L, Laurent G, Maurel F, Jean L. Synthesis and Evaluation of the Photochemical Properties of Heterocyclic Hemiindigos. Chemistry 2025; 31:e202500803. [PMID: 40115998 PMCID: PMC12057614 DOI: 10.1002/chem.202500803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 03/23/2025]
Abstract
This study reports a series of novel heterocyclic hemiindigos (Het-HI) synthesized via the condensation of indoxyl acetate with various heteroaromatic aldehydes. The influence of electron-rich and electron-poor heterocycles on the photochemical and photophysical properties of these compounds has been investigated. Our findings reveal that several Het-HIs exhibit noteworthy photoswitching behavior, including enhanced absorption at the visible region. Notably, certain derivatives respond efficiently to green and red light, achieving good conversions to the metastable E-isomer and displaying prolonged half-lives of up to 53 days in a polar solvent. The results highlight the potential of these photoswitches for applications in molecular devices and responsive materials.
Collapse
Affiliation(s)
| | | | - Ahmed El Rhaz
- Université Paris Cité, CNRS, Inserm, CiTCoMParisFrance
| | - Lucas Pagès
- Université Paris Cité, CNRS, Inserm, CiTCoMParisFrance
| | - Guillaume Laurent
- Université Paris‐Saclay, ENS Paris‐Saclay, CNRS, PPSMGif‐sur‐YvetteFrance
| | | | - Ludovic Jean
- Université Paris Cité, CNRS, Inserm, CiTCoMParisFrance
| |
Collapse
|
3
|
Kohl F, Vogl T, Hampel F, Dube H. Hemiphosphoindigos as a platform for chiroptical or water soluble photoswitching. Nat Commun 2025; 16:1760. [PMID: 39971955 PMCID: PMC11840110 DOI: 10.1038/s41467-025-56942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 02/06/2025] [Indexed: 02/21/2025] Open
Abstract
Photoswitches are important molecular tools to precisely control the behavior of matter by using light irradiation. They have found application in virtually all applied chemical fields from chemical biology to material sciences. However, great challenges remain in advanced property design including tailored chiroptical responses or water solubility. Here, hemiphosphoindigo (HPI) photoswitches are presented as capable phosphorus-based photoswitches and a distinct addition to the established indigoid chromophore family. Phosphinate is embedded in the core indigoid chromophore and the resulting optimized photoswitches display high thermal stabilities, excellent fatigue resistance and high isomer enrichment. A series of planar, twisted and heterocyclic HPIs are investigated to probe design strategies for advantageous photophysical properties. The phosphinate provides a platform for easily accessible, water-soluble photoswitches, especially interesting for biological applications. Its chiral nature further allows light-induced modulation of chiroptical properties. HPIs therefore open up a distinct structural space for photoswitch generation and advanced light-responsive applications.
Collapse
Affiliation(s)
- Fabien Kohl
- Friedrich-Alexander Universität Erlangen-Nurnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Theresa Vogl
- Friedrich-Alexander Universität Erlangen-Nurnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Frank Hampel
- Friedrich-Alexander Universität Erlangen-Nurnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Henry Dube
- Friedrich-Alexander Universität Erlangen-Nurnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany.
| |
Collapse
|
4
|
Das P, Grinalds NJ, Ghiviriga I, Abboud KA, Dobrzycki Ł, Xue J, Castellano RK. Dicyanorhodanine-Pyrrole Conjugates for Visible Light-Driven Quantitative Photoswitching in Solution and the Solid State. J Am Chem Soc 2024; 146:11932-11943. [PMID: 38629510 DOI: 10.1021/jacs.4c00983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Small molecule photoswitches capable of toggling between two distinct molecular states in response to light are versatile tools to monitor biological processes, control photochemistry, and design smart materials. In this work, six novel dicyanorhodanine-based pyrrole-containing photoswitches are reported. The molecular design avails both the Z and E isomers from synthesis, where each can be isolated using chromatographic techniques. Inter- and intramolecular hydrogen bonding (H-bonding) interactions available to the E and Z isomers, respectively, uniquely impart thermal stability to each isomer over long time periods. Photoisomerization could be assessed by solution NMR and UV-vis spectroscopic techniques along with complementary ground- and excited-state computational studies, which show good agreement. Quantitative E → Z isomerization occurs upon 523 nm irradiation of the parent compound (where R = H) in solution, whereas Z → E isomerization using 404 nm irradiation offers a photostationary state (PSS) ratio of 84/16 (E/Z). Extending the π-conjugation of the pyrrole unit (where R = p-C6H4-OMe) pushes the maximum absorption to the yellow-orange region of the visible spectrum and allows bidirectional quantitative isomerization with 404 and 595 nm excitation. Comparator molecules have been prepared to report how the presence or absence of H-bonding affects the photoswitching behavior. Finally, studies of the photoswitches in neat films and photoinactive polymer matrices reveal distinctive structural and optical properties of the Z and E isomers and ultimately afford reversible photoswitching to spectrally unique PSSs using visible light sources including the Sun.
Collapse
Affiliation(s)
- Parag Das
- Department of Chemistry, University of Florida, P. O. Box 117200, Gainesville, Florida 32611, United States
| | - Nathan J Grinalds
- Department of Materials Science and Engineering, University of Florida, P. O. Box 116400, Gainesville, Florida 32611, United States
| | - Ion Ghiviriga
- Department of Chemistry, University of Florida, P. O. Box 117200, Gainesville, Florida 32611, United States
| | - Khalil A Abboud
- Department of Chemistry, University of Florida, P. O. Box 117200, Gainesville, Florida 32611, United States
| | - Łukasz Dobrzycki
- Department of Chemistry, University of Florida, P. O. Box 117200, Gainesville, Florida 32611, United States
| | - Jiangeng Xue
- Department of Materials Science and Engineering, University of Florida, P. O. Box 116400, Gainesville, Florida 32611, United States
| | - Ronald K Castellano
- Department of Chemistry, University of Florida, P. O. Box 117200, Gainesville, Florida 32611, United States
| |
Collapse
|
5
|
Gernet A, El Rhaz A, Jean L. Easily Accessible Substituted Heterocyclic Hemithioindigos as Bistable Molecular Photoswitches. Chemistry 2023; 29:e202301160. [PMID: 37357141 DOI: 10.1002/chem.202301160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
Thioaurone chromophores, part of the indigoid family and commonly named hemithioindigos, have recently gained attention due to their interesting photoswitching properties. The study focuses on heterocyclic hemithioindigos (Het-HTIs) and investigates their synthesis using electron-rich and electron-poor heterocycles and modifications to the thioindigo moiety. Furthermore, it aims to evaluate the photoswitching performances of these synthesised compounds, with a particular emphasis on the influence of the heterocycles on the photoisomerization capabilities, which was found to be more prominent than the modifications made to the thioindigo moiety. Among the 44 Het-HTIs tested, several exhibited highly efficient photoswitchable properties, demonstrating Z-to-E photoisomerization in the blue region, and E-to-Z photoisomerization in the green or the red regions. Additionally, the metastable E-isomer displayed an impressive half-life of up to 54 days in a polar solvent (DMSO). These results suggest that heterocyclic hemithioindigos hold great promise as photoswitches for researchers interested in light-controlled molecular mechanisms.
Collapse
Affiliation(s)
- Aurélie Gernet
- Université Paris Cité, CNRS, Inserm, CiTCoM, 75006, Paris, France
| | - Ahmed El Rhaz
- Université Paris Cité, CNRS, Inserm, CiTCoM, 75006, Paris, France
| | - Ludovic Jean
- Université Paris Cité, CNRS, Inserm, CiTCoM, 75006, Paris, France
| |
Collapse
|
6
|
Li J, Ma X, Wang Y, Cheng Y, Qin Y, Zhai J, Xie X. Proton-Coupled Photochromic Hemithioindigo: Toward Photoactivated Chemical Sensing and Imaging. Anal Chem 2023; 95:11664-11671. [PMID: 37495553 PMCID: PMC10414032 DOI: 10.1021/acs.analchem.3c01504] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/08/2023] [Indexed: 07/28/2023]
Abstract
We report photoswitchable fluorescent hemithioindigos (HTIs) where the metastable E isomers were stabilized by the proton-bridged intramolecular hydrogen bond. Titration experiments and computational analysis indicated that the E isomers were much more basic than the Z isomers, which enabled photoactivated colorimetric and fluorescent pH response in solvents and polypropylene films. The HTIs exhibited reversibly switchable fluorescence with the Z isomers being the most fluorescent. Moreover, the HTIs were lysosomotropic and the kinetic fluorescence evolution during photoswitching was able to differentiate subcellular compartments with different pH. The combination of photoenhanced basicity, switchable fluorescence, and proton-coupled photochromism lay the groundwork for a broad range of chemical and biological applications.
Collapse
Affiliation(s)
- Jing Li
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
| | - Xueqing Ma
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
| | - Yifu Wang
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
| | - Yu Cheng
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
| | - Yuemin Qin
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
| | - Jingying Zhai
- Academy
for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaojiang Xie
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
| |
Collapse
|
7
|
Nakamura A, Rao F, Ukiya K, Matsunaga R, Ohira SI, Maegawa T. A concise synthesis of thioaurones via NBS-induced cyclization of MOM-protected 2'-mercaptochalcones. Org Biomol Chem 2023; 21:1134-1137. [PMID: 36484376 DOI: 10.1039/d2ob01995g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
A mild and efficient approach for the synthesis of thioaurones via NBS-induced cyclization of methoxymethyl-protected mercapto-chalcones has been developed. This simple method is highly functional group tolerant and provides straightforward access to thioaurones in good to high yields.
Collapse
Affiliation(s)
- Akira Nakamura
- School of Pharmaceutical Sciences, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Fei Rao
- School of Pharmaceutical Sciences, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Kazuchika Ukiya
- School of Pharmaceutical Sciences, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Riko Matsunaga
- School of Pharmaceutical Sciences, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Shin-Ichiro Ohira
- School of Pharmaceutical Sciences, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Tomohiro Maegawa
- School of Pharmaceutical Sciences, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| |
Collapse
|
8
|
Krell-Jørgensen M, Zulfikri H, Bonnevie MG, Bro FS, Dohn AO, Laraia L. Redshifted and thermally bistable one-way quantitative hemithioindigo-derived photoswitches enabled by isomer-specific excited state intramolecular proton transfer. Chem Commun (Camb) 2023; 59:563-566. [PMID: 36537010 DOI: 10.1039/d2cc05548a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report bistable indole-containing hemithioindigos (HTIs) with one-way quantitative photoswitching properties. Supported by state-averaged CASPT2/CASSCF calculations, we propose a mechanism for the observed one-way photoswitching that involves an isomer-specific excited state intramolecular proton transfer (ESIPT). Additionally, we developed a thermally bistable oligomer-inspired bipyrrole-containing HTI, which displays large band separation and bidirectional near-quantitative photoisomerization in the near-infrared, bio-optical window.
Collapse
Affiliation(s)
- Mikkel Krell-Jørgensen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 2800, Kongens Lyngby, Denmark.
| | - Habiburrahman Zulfikri
- Science Institute and Faculty of Physical Sciences, University of Iceland, Reykjavík, Iceland.,Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia
| | - Magnus Grage Bonnevie
- Department of Chemistry, Technical University of Denmark, Kemitorvet 2800, Kongens Lyngby, Denmark.
| | - Frederik Simonsen Bro
- Department of Chemistry, Technical University of Denmark, Kemitorvet 2800, Kongens Lyngby, Denmark.
| | - Asmus Ougaard Dohn
- Science Institute and Faculty of Physical Sciences, University of Iceland, Reykjavík, Iceland.,Department of Physics, Technical University of Denmark, Fysikvej 2800, Kongens Lyngby, Denmark
| | - Luca Laraia
- Department of Chemistry, Technical University of Denmark, Kemitorvet 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
9
|
Josef V, Hampel F, Dube H. Heterocyclic Hemithioindigos: Highly Advantageous Properties as Molecular Photoswitches. Angew Chem Int Ed Engl 2022; 61:e202210855. [PMID: 36040861 PMCID: PMC9826360 DOI: 10.1002/anie.202210855] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Indexed: 01/11/2023]
Abstract
A survey of heterocyclic hemithioindigo photoswitches is presented identifying a number of structural motives with outstanding property profiles. The highly sought-after combination of pronounced color change, quantitative switching in both directions, exceptional high quantum yields, and tunable high thermal stability of metastable states can be realized with 4-imidazole, 2-pyrrole, and 3-indole-based derivatives. In the former, an unusual preorganization using isomer selective chalcogen- and hydrogen bonding allows to precisely control geometry changes and tautomerism upon switching. Heterocyclic hemithioindigos thus represent highly promising photoswitches with advanced capabilities that will be of great value to anyone interested in establishing defined and reversible control at the molecular level.
Collapse
Affiliation(s)
- Verena Josef
- Friedrich-Alexander Universität Erlangen-NürnbergDepartment of Chemistry and PharmacyNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Frank Hampel
- Friedrich-Alexander Universität Erlangen-NürnbergDepartment of Chemistry and PharmacyNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Henry Dube
- Friedrich-Alexander Universität Erlangen-NürnbergDepartment of Chemistry and PharmacyNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| |
Collapse
|
10
|
Josef V, Hampel F, Dube H. Heterocyclic Hemithioindigos: Highly Advantageous Properties as Molecular Photoswitches. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Verena Josef
- FAU: Friedrich-Alexander-Universitat Erlangen-Nurnberg Chemistry and Pharmacy GERMANY
| | - Frank Hampel
- FAU: Friedrich-Alexander-Universitat Erlangen-Nurnberg Chemistry and Pharmacy GERMANY
| | - Henry Dube
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Chemistry and Pharmacy Nikolaus-Fiebiger-Str. 10 91058 Erlangen GERMANY
| |
Collapse
|
11
|
Zhang Z, Wang W, O'Hagan M, Dai J, Zhang J, Tian H. Stepping Out of the Blue: From Visible to Near-IR Triggered Photoswitches. Angew Chem Int Ed Engl 2022; 61:e202205758. [PMID: 35524420 DOI: 10.1002/anie.202205758] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Indexed: 12/22/2022]
Abstract
Light offers unique opportunities for controlling the activity of materials and biosystems with high spatiotemporal resolution. Molecular photoswitches are chromophores that undergo reversible isomerization between different states upon irradiation with light, allowing a convenient means to control their influence over the system of interest. However, a significant limitation of classical photoswitches is the requirement to initiate the switching in one or both directions using deleterious UV light with poor tissue penetration. Red-shifted photoswitches are hence in high demand and have attracted keen recent research interest. In this Review, we highlight recent progress towards the development of visible- and NIR-activated photoswitches characterized by distinct photochromic reaction mechanisms. We hope to inspire further endeavors in this field, allowing the full potential of these tools in biotechnology and materials chemistry applications to be realized.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenhui Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Michael O'Hagan
- Institute of Chemistry, The Minerva Center for Bio-hybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Jinghong Dai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
12
|
Zhang Z, Wang W, O’Hagan M, Dai J, Zhang J, Tian H. Stepping Out of the Blue: From Visible to Near‐IR Triggered Photoswitches. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhiwei Zhang
- East China University of Science and Technology School of Chemistry and Molecular Engineering Dept. Chem Shanghai CHINA
| | - Wenhui Wang
- East China University of Science and Technology School of Chemistry and Molecular Engineering Dept. Chem CHINA
| | | | - Jinghong Dai
- East China University of Science and Technology School of Chemistry and Molecular Engineering Dept. Chem CHINA
| | - Junji Zhang
- East China University of Science and Technology School of Chemistry and Molecular Engineering Dept. Chem Shanghai CHINA
| | - He Tian
- East China University of Science and Technology School of Chemistry and Molecular Engineering Institute of Fine Chemicals Meilong Road 130 200237 Shanghai! CHINA
| |
Collapse
|
13
|
Shainyan BA, Sigalov MV. H-bonding-assisted transformations of cyclic chalcones: Z/E isomerization, self-association and unusual tautomerism. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Wang H, Bisoyi H, Zhang X, Hassan F, Li Q. Visible Light-Driven Molecular Switches and Motors: Recent Developments and Applications. Chemistry 2021; 28:e202103906. [PMID: 34964995 DOI: 10.1002/chem.202103906] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Indexed: 11/09/2022]
Abstract
Inspired by human vision, a diverse range of light-driven molecular switches and motors has been developed for fundamental understanding and application in material science and biology. Recently, the design and synthesis of visible light-driven molecular switches and motors have been actively pursued. This emerging trend is partly motivated to avoid the harmful effects of ultraviolet light, which was necessary to drive the classical molecular switches and motors at least in one direction, impeding their employment in biomedical and photopharmacology applications. Moreover, visible light-driven molecular switches and motors are demonstrated to enable benign optical materials for advanced photonic devices. Therefore, during the past several years, visible light-driven molecular switches based on azobenzene derivatives, diarylethenes, 1,2-dicyanodithienylethenes, hemithioindigo derivatives, iminothioindoxyls, donor-acceptor Stenhouse adducts, and overcrowded alkene based molecular motors have been judiciously designed, synthesized, and used in the development of functional materials and systems for a wide range of applications. In this Review, we present the recent developments toward the design of visible light-driven molecular switches and motors, with their applications in the fabrication of functional materials and systems in material science, bioscience, pharmacology, etc . The visible light-driven molecular switches and motors realized so far undoubtedly widen the scope of these interesting compounds for technological and biological applications. We hope this Review article could provide additional impetus and inspire further research interests for future exploration of visible light-driven advanced materials, systems, and devices.
Collapse
Affiliation(s)
- Hao Wang
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Hari Bisoyi
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Xinfang Zhang
- Kent State University, Advanced Materials and Liquid Crystal Institue, UNITED STATES
| | - Fathy Hassan
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Quan Li
- Kent State University, Liquid Crystal Institute and Chemical Physics Interdiscinplary Program, 3273 Crown Pointe Drive, 44224, Stow, UNITED STATES
| |
Collapse
|
15
|
Bruekers JP, Bakker R, White PB, Tinnemans P, Elemans JA, Nolte RJ. Stabilization of thermally unstable photoisomers of pyridinium-functionalized hemithioindigo switches by host-guest complexation. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
16
|
Volarić J, Szymanski W, Simeth NA, Feringa BL. Molecular photoswitches in aqueous environments. Chem Soc Rev 2021; 50:12377-12449. [PMID: 34590636 PMCID: PMC8591629 DOI: 10.1039/d0cs00547a] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 12/17/2022]
Abstract
Molecular photoswitches enable dynamic control of processes with high spatiotemporal precision, using light as external stimulus, and hence are ideal tools for different research areas spanning from chemical biology to smart materials. Photoswitches are typically organic molecules that feature extended aromatic systems to make them responsive to (visible) light. However, this renders them inherently lipophilic, while water-solubility is of crucial importance to apply photoswitchable organic molecules in biological systems, like in the rapidly emerging field of photopharmacology. Several strategies for solubilizing organic molecules in water are known, but there are not yet clear rules for applying them to photoswitchable molecules. Importantly, rendering photoswitches water-soluble has a serious impact on both their photophysical and biological properties, which must be taken into consideration when designing new systems. Altogether, these aspects pose considerable challenges for successfully applying molecular photoswitches in aqueous systems, and in particular in biologically relevant media. In this review, we focus on fully water-soluble photoswitches, such as those used in biological environments, in both in vitro and in vivo studies. We discuss the design principles and prospects for water-soluble photoswitches to inspire and enable their future applications.
Collapse
Affiliation(s)
- Jana Volarić
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nadja A Simeth
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
17
|
Sailer A, Meiring JCM, Heise C, Pettersson LN, Akhmanova A, Thorn‐Seshold J, Thorn‐Seshold O. Pyrrole Hemithioindigo Antimitotics with Near-Quantitative Bidirectional Photoswitching that Photocontrol Cellular Microtubule Dynamics with Single-Cell Precision*. Angew Chem Int Ed Engl 2021; 60:23695-23704. [PMID: 34460143 PMCID: PMC8596636 DOI: 10.1002/anie.202104794] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/23/2021] [Indexed: 11/07/2022]
Abstract
We report the first cellular application of the emerging near-quantitative photoswitch pyrrole hemithioindigo, by rationally designing photopharmaceutical PHTub inhibitors of the cytoskeletal protein tubulin. PHTubs allow simultaneous visible-light imaging and photoswitching in live cells, delivering cell-precise photomodulation of microtubule dynamics, and photocontrol over cell cycle progression and cell death. This is the first acute use of a hemithioindigo photopharmaceutical for high-spatiotemporal-resolution biological control in live cells. It additionally demonstrates the utility of near-quantitative photoswitches, by enabling a dark-active design to overcome residual background activity during cellular photopatterning. This work opens up new horizons for high-precision microtubule research using PHTubs and shows the cellular applicability of pyrrole hemithioindigo as a valuable scaffold for photocontrol of a range of other biological targets.
Collapse
Affiliation(s)
- Alexander Sailer
- Department of PharmacyLudwig-Maximilians University of MunichButenandtstrasse 781377MunichGermany
| | - Joyce C. M. Meiring
- Department of BiologyUtrecht UniversityPadualaan 83584UtrechtThe Netherlands
| | - Constanze Heise
- Department of PharmacyLudwig-Maximilians University of MunichButenandtstrasse 781377MunichGermany
| | - Linda N. Pettersson
- Department of PharmacyLudwig-Maximilians University of MunichButenandtstrasse 781377MunichGermany
| | - Anna Akhmanova
- Department of BiologyUtrecht UniversityPadualaan 83584UtrechtThe Netherlands
| | - Julia Thorn‐Seshold
- Department of PharmacyLudwig-Maximilians University of MunichButenandtstrasse 781377MunichGermany
| | - Oliver Thorn‐Seshold
- Department of PharmacyLudwig-Maximilians University of MunichButenandtstrasse 781377MunichGermany
| |
Collapse
|
18
|
Sailer A, Meiring JCM, Heise C, Pettersson LN, Akhmanova A, Thorn‐Seshold J, Thorn‐Seshold O. Pyrrole Hemithioindigo Antimitotics with Near‐Quantitative Bidirectional Photoswitching that Photocontrol Cellular Microtubule Dynamics with Single‐Cell Precision**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Alexander Sailer
- Department of Pharmacy Ludwig-Maximilians University of Munich Butenandtstrasse 7 81377 Munich Germany
| | - Joyce C. M. Meiring
- Department of Biology Utrecht University Padualaan 8 3584 Utrecht The Netherlands
| | - Constanze Heise
- Department of Pharmacy Ludwig-Maximilians University of Munich Butenandtstrasse 7 81377 Munich Germany
| | - Linda N. Pettersson
- Department of Pharmacy Ludwig-Maximilians University of Munich Butenandtstrasse 7 81377 Munich Germany
| | - Anna Akhmanova
- Department of Biology Utrecht University Padualaan 8 3584 Utrecht The Netherlands
| | - Julia Thorn‐Seshold
- Department of Pharmacy Ludwig-Maximilians University of Munich Butenandtstrasse 7 81377 Munich Germany
| | - Oliver Thorn‐Seshold
- Department of Pharmacy Ludwig-Maximilians University of Munich Butenandtstrasse 7 81377 Munich Germany
| |
Collapse
|
19
|
Majee D, Presolski S. Dithienylethene-Based Photoswitchable Catalysts: State of the Art and Future Perspectives. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Debashis Majee
- Division of Science (Chemistry), Yale-NUS College 16 College Ave West, Singapore 138527
| | - Stanislav Presolski
- Division of Science (Chemistry), Yale-NUS College 16 College Ave West, Singapore 138527
| |
Collapse
|
20
|
Sigalov MV, Shainyan BA, Chipanina NN, Oznobikhina LP, Sterkhova IV. 2-(1H-diazol-2-ylmethylene)indane-1-ones and 2-(1H-diazol-2-ylmethylene)-1H-indene-1,3(2H)-diones: Photoisomerization and hydrogen-bonding-induced association. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Welleman IM, Hoorens MWH, Feringa BL, Boersma HH, Szymański W. Photoresponsive molecular tools for emerging applications of light in medicine. Chem Sci 2020; 11:11672-11691. [PMID: 34094410 PMCID: PMC8162950 DOI: 10.1039/d0sc04187d] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/14/2020] [Indexed: 12/29/2022] Open
Abstract
Light-based therapeutic and imaging modalities, which emerge in clinical applications, rely on molecular tools, such as photocleavable protecting groups and photoswitches that respond to photonic stimulus and translate it into a biological effect. However, optimisation of their key parameters (activation wavelength, band separation, fatigue resistance and half-life) is necessary to enable application in the medical field. In this perspective, we describe the applications scenarios that can be envisioned in clinical practice and then we use those scenarios to explain the necessary properties that the photoresponsive tools used to control biological function should possess, highlighted by examples from medical imaging, drug delivery and photopharmacology. We then present how the (photo)chemical parameters are currently being optimized and an outlook is given on pharmacological aspects (toxicity, solubility, and stability) of light-responsive molecules. With these interdisciplinary insights, we aim to inspire the future directions for the development of photocontrolled tools that will empower clinical applications of light.
Collapse
Affiliation(s)
- Ilse M Welleman
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen Groningen The Netherlands
- Stratingh Institute for Chemistry, University of Groningen Groningen The Netherlands
| | - Mark W H Hoorens
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen Groningen The Netherlands
- Stratingh Institute for Chemistry, University of Groningen Groningen The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen Groningen The Netherlands
| | - Hendrikus H Boersma
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen Groningen The Netherlands
- Departments of Clinical Pharmacy and Pharmacology, Nuclear Medicine and Molecular Imaging, University Medical Center Groningen Groningen The Netherlands
| | - Wiktor Szymański
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen Groningen The Netherlands
- Stratingh Institute for Chemistry, University of Groningen Groningen The Netherlands
| |
Collapse
|
22
|
Köttner L, Schildhauer M, Wiedbrauk S, Mayer P, Dube H. Oxidized Hemithioindigo Photoswitches-Influence of Oxidation State on (Photo)physical and Photochemical Properties. Chemistry 2020; 26:10712-10718. [PMID: 32485011 PMCID: PMC7496871 DOI: 10.1002/chem.202002176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/28/2020] [Indexed: 11/05/2022]
Abstract
The photophysical and photochemical properties of sulfoxide and sulfone derivatives of hemithioindigo photoswitches are scrutinized and compared to the unoxidized parent chromophores. Oxidation results in significantly blue-shifted absorptions and mostly reduction of photochromism while thermal stabilities of individual isomers remain largely unaltered. Effective photoswitching takes place at shorter wavelengths compared to parent hemithioindigos and high isomeric yields can be obtained reversibly in the respective photostationary states. Reversible solid-state photoswitching is observed for a twisted sulfone derivative accompanied by visible color changes. These results establish oxidized hemithioindigo photoswitches as promising and versatile tools for robust light-control of molecular behavior for a wide range of applications.
Collapse
Affiliation(s)
- Laura Köttner
- Department of Chemistry and Center for Integrated Protein Science CIPSMLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377München
| | - Monika Schildhauer
- Department of Chemistry and Center for Integrated Protein Science CIPSMLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377München
| | - Sandra Wiedbrauk
- Department of Chemistry and Center for Integrated Protein Science CIPSMLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377München
| | - Peter Mayer
- Department of Chemistry and Center for Integrated Protein Science CIPSMLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377München
| | - Henry Dube
- Department of Chemistry and Center for Integrated Protein Science CIPSMLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377München
- Department of Chemistry and PharmacyFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058Erlangen
| |
Collapse
|