1
|
Duan YT, Yang B, Wang ZX. Pincer Nickel-Catalyzed Olefination of Alcohols with Benzylphosphine Oxides. Chem Asian J 2024:e202400255. [PMID: 38600033 DOI: 10.1002/asia.202400255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
N,N,P-Pincer nickel complexes effectively catalyze reaction of alcohols with benzylphosphine oxides to form alkenes in good yields. The protocol suits for a wide scope of substrates and generates only E-configurated alkenes. The method also shows good compatibility of functional groups. Methoxy, methylthio, trifluoromethyl, ketal, fluoro, chloro, bromo, thienyl, and furyl groups are tolerated. The mechanism studies support that the reaction proceeds through catalytic dehydrogenation of alcohols to aldehydes or ketones followed by condensation with benzyldiphenylphosphine oxides in the presence of KOtBu.
Collapse
Affiliation(s)
- Yu-Tong Duan
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026
| | - Bo Yang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026
- Frontiers Science Center for Transformative Molecules (FSCTM), Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Zhong-Xia Wang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026
| |
Collapse
|
2
|
Vera DR, Ardila DM, Palma A, Cobo J, Glidewell C. Conversion of 2-methyl-4-styrylquinolines into 2,4-distyrylquinolines: synthesis, and spectroscopic and structural characterization of five examples. Acta Crystallogr C Struct Chem 2023; 79:94-103. [PMID: 36871291 PMCID: PMC9985948 DOI: 10.1107/s2053229623001432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Four new 2,4-distyrylquinolines and one 2-styryl-4-[2-(thiophen-2-yl)vinyl]quinoline have been synthesized using indium trichloride condensation reactions between aromatic aldehydes and the corresponding 2-methylquinolines, which were themselves prepared using Friedländer annulation reactions between mono- or diketones and (2-aminophenyl)chalcones: the products have all been fully characterized by spectroscopic and crystallographic methods. 2,4-Bis[(E)-styryl]quinoline, C25H19N, (IIa), and its dichloro analogue, 2-[(E)-2,4-dichlorostyryl]-4-[(E)-styryl]quinoline, C25H17Cl2N, (IIb), exhibit different orientations of the 2-styryl unit relative to the quinoline nucleus. In each of the 3-benzoyl analogues {2-[(E)-4-bromostyryl]-4-[(E)-styryl]quinolin-3-yl}(phenyl)methanone, C32H22BrNO, (IIc), {2-[(E)-4-bromostyryl]-4-[(E)-4-chlorostyryl]quinolin-3-yl}(phenyl)methanone, C32H21BrClNO, (IId), and {2-[(E)-4-bromostyryl]-4-[(E)-2-(thiophen-2-yl)vinyl]quinolin-3-yl}(phenyl)methanone, C30H20BrNOS, (IIe), the orientation of the 2-styryl unit is similar to that in (IIa), but the orientation of the 4-arylvinyl units show considerable variation. The thiophene unit in (IIe) is disordered over two sets of atomic sites having occupancies of 0.926 (3) and 0.074 (3). There are no hydrogen bonds of any kind in the structure of (IIa), but in (IId), a single C-H...O hydrogen bond links the molecules into cyclic centrosymmetric R22(20) dimers. A combination of C-H...N and C-H...π hydrogen bonds links the molecules of (IIb) into a three-dimensional framework structure. A combination of three C-H...π hydrogen bonds links the molecules of (IIc) into sheets, and a combination of C-H...O and C-H...π hydrogen bonds forms sheets in (IIe). Comparisons are made with the structures of some related compounds.
Collapse
Affiliation(s)
- Diana R. Vera
- Laboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander, AA 678, Bucaramanga, Colombia
| | - Diana M. Ardila
- Laboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander, AA 678, Bucaramanga, Colombia
| | - Alirio Palma
- Laboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander, AA 678, Bucaramanga, Colombia
| | - Justo Cobo
- Departamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain
| | | |
Collapse
|
3
|
Du H, Yue M, Huang X, Duan G, Yang Z, Huang W, Shen W, Yin X. Preparation, Application and Enhancement Dyeing Properties of ZnO Nanoparticles in Silk Fabrics Dyed with Natural Dyes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3953. [PMID: 36432239 PMCID: PMC9699395 DOI: 10.3390/nano12223953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/03/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
In this study, ZnO nanoparticles were prepared by a hydrothermal method with varying the reaction times, material ratios and reaction temperatures. The samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray Diffraction (XRD) and Fourier infrared spectroscopy (FTIR). It was shown that the material ratio significantly affected the structure and morphology of the synthesized ZnO nanoparticles, and then the uneven nano-octahedral structure, uniform nano-octahedral structure, nano-tubular structure, and nano-sheet structure could be obtained successively. The synthesized ZnO nanoparticles as mordant were used for the dyeing of silk fabrics with different natural dyes (tea polyphenols and hematoxylin). Moreover, they could improve the dyeing properties and fastness (wash and light) on silk fabrics to a certain extent.
Collapse
Affiliation(s)
- Haijuan Du
- College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Mengyuan Yue
- College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Xin Huang
- College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhihui Yang
- College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Weihan Huang
- College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Wenjie Shen
- College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Xiangfeng Yin
- College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007, China
| |
Collapse
|
4
|
Su F, Lai M, Zhao M, Song M, Hu X, Zhang J. t
‐BuOK‐Mediated Transition‐Metal‐Free Direct Olefination and Alkylation of Methyl
N
‐Heteroarenes with Primary Alcohols under Control of Temperature. ChemistrySelect 2022. [DOI: 10.1002/slct.202104454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fangyao Su
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science Henan Agricultural University 95 Wenhua Road Zhengzhou 450002 P. R. China
| | - Miao Lai
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science Henan Agricultural University 95 Wenhua Road Zhengzhou 450002 P. R. China
| | - Mingqin Zhao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science Henan Agricultural University 95 Wenhua Road Zhengzhou 450002 P. R. China
| | - Mingzhou Song
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science Henan Agricultural University 95 Wenhua Road Zhengzhou 450002 P. R. China
| | - Xin Hu
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science Henan Agricultural University 95 Wenhua Road Zhengzhou 450002 P. R. China
| | - Junqin Zhang
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science Henan Agricultural University 95 Wenhua Road Zhengzhou 450002 P. R. China
| |
Collapse
|
5
|
Tamilthendral V, Balamurugan G, Ramesh R, Malecki JG. Ru(II)–NNO pincer‐type complexes catalysed E‐olefination of alkyl‐substituted quinolines/pyrazines utilizing primary alcohols. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Veerappan Tamilthendral
- Centre for Organometallic Chemistry, School of Chemistry Bharathidasan University Tiruchirappalli Tamil Nadu India
| | - Gunasekaran Balamurugan
- Centre for Organometallic Chemistry, School of Chemistry Bharathidasan University Tiruchirappalli Tamil Nadu India
| | - Rengan Ramesh
- Centre for Organometallic Chemistry, School of Chemistry Bharathidasan University Tiruchirappalli Tamil Nadu India
| | - Jan Grzegorz Malecki
- Department of Crystallography, Institute of Chemistry University of Silesia Katowice Poland
| |
Collapse
|
6
|
Bera A, Kabadwal LM, Bera S, Banerjee D. Recent advances on non-precious metal-catalyzed C-H functionalization of N-heteroarenes. Chem Commun (Camb) 2021; 58:10-28. [PMID: 34874036 DOI: 10.1039/d1cc05899a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
N-Heteroarenes are widely used for numerous medicinal applications, lifesaving drugs and show utmost importance as intermediates in chemical synthesis. This feature article highlights the recent advances, from 2015 to August 2021, on sp2 and sp3 C-H bond functionalization reactions of various N-heteroarenes catalyzed by non-precious transition metals (Mn, Co, Fe, Ni, etc.). The salient features of the report are: (i) the development of newer catalysis for Csp2-H activation of N-heteroarenes and categorized into alkylation, alkenylation, borylation, cyanation, and annulation reactions, (ii) recent advances on Csp3-H bond functionalization of N-heteroarenes considering newer approaches for alkylation as well as alkenylation processes, and (iii) synthetic applications and practical utility of the catalytic protocols utilized for late-stage drug development; (iv) scope for the development of newer catalytic protocols along with mechanistic studies and detail mechanistic findings of various important processes.
Collapse
Affiliation(s)
- Atanu Bera
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Lalit Mohan Kabadwal
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Sourajit Bera
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Debasis Banerjee
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| |
Collapse
|
7
|
Li X, Huang B, Wang J, Zhang Y, Liao W. NH4I-mediated sp3 C-H cross-dehydrogenative coupling of benzylamines with 2-methylquinoline for the synthesis of E-2-styrylquinolines. JOURNAL OF CHEMICAL RESEARCH 2021. [DOI: 10.1177/17475198211019253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Without any metal catalyst, a simple and efficient method for the synthesis of E-2-styrylquinolines through sp3 C-H cross-dehydrogenative coupling of benzylamines with 2-methylquinolines mediated by NH4I under air is successfully developed. The oxidative olefination proceeded through deamination and sp3 C–H bond activation. A plausible mechanism is proposed for the construction of E-2-styrylquinolines.
Collapse
Affiliation(s)
- Xue Li
- Drug Research Center, Traditional Chinese Medicine Institute of Jiangxi, Nanchang, P.R. China
| | - Bin Huang
- Drug Research Center, Traditional Chinese Medicine Institute of Jiangxi, Nanchang, P.R. China
| | - JiangWei Wang
- Jiangxi Provincial Hospital of Traditional Chinese medicine, Nanchang, P.R. China
| | - YuanYuan Zhang
- Drug Research Center, Traditional Chinese Medicine Institute of Jiangxi, Nanchang, P.R. China
| | - WeiBo Liao
- Drug Research Center, Traditional Chinese Medicine Institute of Jiangxi, Nanchang, P.R. China
| |
Collapse
|
8
|
Li Y, An JD, Wang TT, Wang Q, Qiao YH, Ding B. Hydrothermal syntheses of a series of copper (II), cadmium (II), and silver (I) coordination polymers with the new 3,5-bis-(triazol-1-yl)-pyridine ligand: structural diversity, anion pollutant absorption, and fluorescent properties. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2020.1810708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Yong Li
- Tianjin Normal University, Tianjin, PR China
| | - Jun-Dan An
- Tianjin Normal University, Tianjin, PR China
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, Tianjin, PR China
| | - Tian-Tian Wang
- Tianjin Normal University, Tianjin, PR China
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, Tianjin, PR China
| | - Qian Wang
- Tianjin Normal University, Tianjin, PR China
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, Tianjin, PR China
| | - Yan-Hong Qiao
- Tianjin Normal University, Tianjin, PR China
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, Tianjin, PR China
| | - Bin Ding
- Tianjin Normal University, Tianjin, PR China
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, Tianjin, PR China
| |
Collapse
|
9
|
Donthireddy SNR, Tiwari CS, Kumar S, Rit A. Atom‐Economic Alk(en)ylations of Esters, Amides, and Methyl Heteroarenes Utilizing Alcohols Following Dehydrogenative Strategies. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- S. N. R. Donthireddy
- Department of Chemistry Indian Institute of Technology Madras Chennai 600036 India
| | | | - Shashi Kumar
- Department of Chemistry Indian Institute of Technology Madras Chennai 600036 India
| | - Arnab Rit
- Department of Chemistry Indian Institute of Technology Madras Chennai 600036 India
| |
Collapse
|
10
|
A review of smart electrospun fibers toward textiles. COMPOSITES COMMUNICATIONS 2020; 22:100506. [PMCID: PMC7497400 DOI: 10.1016/j.coco.2020.100506] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 05/24/2023]
Abstract
Electrospinning as a versatile technology has attracted a large amount of attention in the past few decades due to the facile way to produce micro- and nano-scale fibers featuring flexibility, large specific surface area and high porosity. Stimuli-responsive polymers are a class of smart materials that are capable of sensing surround environment and interacting with them. Therefore, the combination of electrospinning and smart materials could have a great deal of benefits over the development of smart fibers. In this review, it offers a comprehensive understanding of smart electrospun fibers toward textile applications. Firstly, the definition of smart fibers and the differences between interactive fibers and passive interactive fibers are briefly introduced. Then some interactive fibers made from temperature-, pH-, light-, electric field/electricity-, magnetic field-, multi-responsive polymers, as well as some polymers featuring piezoelectric and triboelectric effect which are suitable flexible electrics, are emphasized with their applications in the form of electrospun fibers. Afterwards, some passive and hybrid smart electrospun fibers are introduced. Finally, associated challenges and perspectives are summarized and discussed. Understanding of passive smart electrospun fibers and interactive smart electrospun fibers. The recent progress in flexible electronics from electrospun fibers. The recent progress in stimuli-responsive polymers applied in interactive smart electrospun fibers.
Collapse
|
11
|
Yang X, Wang J, Guo H, Liu L, Xu W, Duan G. Structural design toward functional materials by electrospinning: A review. E-POLYMERS 2020. [DOI: 10.1515/epoly-2020-0068] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractElectrospinning as one of the most versatile technologies have attracted a lot of scientists’ interests in past decades due to its great diversity of fabricating nanofibers featuring high aspect ratio, large specific surface area, flexibility, structural abundance, and surface functionality. Remarkable progress has been made in terms of the versatile structures of electrospun fibers and great functionalities to enable a broad spectrum of applications. In this article, the electrospun fibers with different structures and their applications are reviewed. First, several kinds of electrospun fibers with different structures are presented. Then the applications of various structural electrospun fibers in different fields, including catalysis, drug release, batteries, and supercapacitors, are reviewed. Finally, the application prospect and main challenges of electrospun fibers are discussed. We hope that this review will provide readers with a comprehensive understanding of the structural design and applications of electrospun fibers in different fields.
Collapse
Affiliation(s)
- Xiuling Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jingwen Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hongtao Guo
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Li Liu
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Wenhui Xu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Gaigai Duan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
12
|
Onoda M, Fujita KI. Iridium-Catalyzed C-Alkylation of Methyl Group on N-Heteroaromatic Compounds using Alcohols. Org Lett 2020; 22:7295-7299. [DOI: 10.1021/acs.orglett.0c02635] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mitsuki Onoda
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ken-ichi Fujita
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
13
|
An JD, Wang TT, Shi YF, Wu XX, Liu YY, Huo JZ, Ding B. A multi-responsive regenerable water-stable two-dimensional cadmium (II) fluorescent probe for highly selective, sensitive and real-time sensing of nitrofurazone and cupric ion. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Wang XZ, Du J, Xiao NN, Zhang Y, Fei L, LaCoste JD, Huang Z, Wang Q, Wang XR, Ding B. Driving force to detect Alzheimer's disease biomarkers: application of a thioflavine T@Er-MOF ratiometric fluorescent sensor for smart detection of presenilin 1, amyloid β-protein and acetylcholine. Analyst 2020; 145:4646-4663. [PMID: 32458857 DOI: 10.1039/d0an00440e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Currently, the highly sensitive detection of Alzheimer's Disease (AD) biomarkers, namely presenilin 1, amyloid β-protein (Aβ), and acetylcholine (ACh), is vital to helping us prevent and diagnose AD. In this work, a novel metal-organic framework [Er(L)(DMF)1.27]n (Er-MOF) (H3L = terphenyl-3,4'',5-tricarboxylic acid) has been synthesized by solvothermal and ultrasonic methods. Further, through the post-synthesis assembly strategy, the fluorescent dye thioflavine T (ThT) has been introduced into Er-MOF to construct a dual-emission ThT@Er-MOF ratiometric fluorescent sensor. This is the first time that ThT@Er-MOF has been successfully applied in the highly sensitive detection of three main Alzheimer's disease biomarkers in the cerebrospinal fluid through three different low cost and facile detection strategies. Firstly, with the spilted DNA strategy, this is the first time that ThT@Er-MOF can be applied in the label-free detection of SSODN (part of the presenilin 1 gene). Secondly, for the detection of Aβ, because ThT can be specifically combined with Aβ and has an excellent characteristic fluorescence band, the dual-emission ThT@Er-MOF sensor can be selectively applied to detect Aβ over the analog protein, which shows far more sensitivity than other Aβ sensors. Thirdly, through the acetylcholine esterase (AchE) enzymatic cleavage and release strategy, ThT@Er-MOF enhances the detection of acetylcholine (ACh) with a low limit of detection (LOD) value (0.03226 nM). It should be noticed that the three different detection methods are low cost and facile. This study also provides the first example of utilizing laser scanning confocal microscopy (LSCM) to investigate the fluorescence resonance energy transfer (FRET) detection mechanism by ThT@Er-MOF in more detail. The location of FRET occurrence and FRET efficiency can also be investigated by LSCM, which can be helpful to understand the FRET detection process by these unique MOF-based hybrid materials.
Collapse
Affiliation(s)
- Xing Ze Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Liu YY, An JD, Wang TT, Li Y, Ding B. Solvo-thermal Preparation and Characterization of Two Cd II
Coordination Polymers Constructed From 2,6-(1,2,4-Triazole-4-yl)pyridine and 5-R-Isophthalic Acid (R = Nitro, Sulfo). Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuan-Yuan Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; MOE Key Laboratory of InorganicOrganic Hybrid Functional Material Chemistry; Tianjin Normal University; 300387 Tianjin P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; 300071 Tianjin P. R. China
| | - Jun-Dan An
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; MOE Key Laboratory of InorganicOrganic Hybrid Functional Material Chemistry; Tianjin Normal University; 300387 Tianjin P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; 300071 Tianjin P. R. China
| | - Tian-Tian Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; MOE Key Laboratory of InorganicOrganic Hybrid Functional Material Chemistry; Tianjin Normal University; 300387 Tianjin P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; 300071 Tianjin P. R. China
| | - Yong Li
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin Normal University; 300387 Tianjin P. R. China
| | - Bin Ding
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; MOE Key Laboratory of InorganicOrganic Hybrid Functional Material Chemistry; Tianjin Normal University; 300387 Tianjin P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; 300071 Tianjin P. R. China
| |
Collapse
|