1
|
Datta A, Jain N. Dual ipso-hydroxylation and para-C-H chalcogenation of arylboronic acids using an NDI photocatalyst in visible light. Chem Commun (Camb) 2025. [PMID: 40370042 DOI: 10.1039/d5cc01389e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
We report a dual ipso-hydroxylation and para-C-H chalcogenation of arylboronic acids using NDI-PC as a photocatalyst in visible light. para-Selective C-H thiocyanation, selenocyanation, thiophenylation, and selenophenylation of phenols, generated in situ from arylboronic acids, has been achieved via a photoredox process in the presence of air as the oxidant. This method is transition-metal free, sustainable, and gives the products in moderate to high yields at room temperature.
Collapse
Affiliation(s)
- Anirban Datta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Nidhi Jain
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
2
|
Pattanayak P, Khandelwal H, Basappa S, Chatterjee T. Regioselective C-H Thio- and Selenocyanation of Pyrazolo[1,5-a]pyrimidines. Chem Asian J 2025; 20:e202401610. [PMID: 39912247 DOI: 10.1002/asia.202401610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/07/2025]
Abstract
Herein, we report a metal-free, N-chlorosuccinamide (NCS)-mediated, highly efficient, and regioselective C-H thio- and selenocyanation of pyrazolo[1,5-a]pyrimidines using KSCN and KSeCN respectively. The transformation required only NCS (1 equiv) and operated under mild conditions such as ambient temperature and aerobic atmosphere. This method was found to be highly efficient for the C-H thiocyanation of pyrazolo[1,5-a]pyrimidines as compared to our previously developed photocatalytic strategy and also enabled the C-H selenocyanation of the substrates to access 3-selenocyanatopyrazolo[1,5-a]pyrimidines, for the first time, which was unexplored or unsuccessful so far. A wide variety of new pyrazolo[1,5-a]pyrimidines bearing -SCN or -SeCN functional groups were synthesized in good to excellent yield. The developed protocol features a broad substrate scope, high functional group tolerance, mild conditions, high to excellent yield of products, efficient scalability, and synthetic diversifications of products. Mechanistic studies revealed an ionic pathway for this reaction.
Collapse
Affiliation(s)
- Paramita Pattanayak
- Department of Chemistry, Birla Institute of Technology & Science, Pilani, Hyderabad Campus Jawahar Nagar, Kapra Mandal, Hyderabad, 500078, Telangana, India
| | - Harshil Khandelwal
- Department of Chemistry, Birla Institute of Technology & Science, Pilani, Hyderabad Campus Jawahar Nagar, Kapra Mandal, Hyderabad, 500078, Telangana, India
| | - Shreeja Basappa
- Department of Chemistry, Birla Institute of Technology & Science, Pilani, Hyderabad Campus Jawahar Nagar, Kapra Mandal, Hyderabad, 500078, Telangana, India
| | - Tanmay Chatterjee
- Department of Chemistry, Birla Institute of Technology & Science, Pilani, Hyderabad Campus Jawahar Nagar, Kapra Mandal, Hyderabad, 500078, Telangana, India
| |
Collapse
|
3
|
Ma Y, Yu P, Qin R, He R, Zeng L, Shi L, Sun S, Liang D. Electrophotocatalytic Thiocyanation and Sulfonylation Cyclization of Unactivated Alkenes. J Org Chem 2025; 90:598-613. [PMID: 39695375 DOI: 10.1021/acs.joc.4c02530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
We report an electrophotocatalytic process that enables the thiocyanation and sulfonylation/cyclization of alkenes. It is applicable to a wide range of unactivated alkenes, using the inexpensive photocatalyst 2,4,6-triphenylpyrylium tetrafluoroborate (TPPT) to produce a diverse array of heterocycles containing sulfonyl and thiocyano groups with good functional group tolerance. The protocol operates under mild, chemical oxidant- and transition-metal-free, with a broad scope of substrates. Preliminary mechanistic studies suggest that the reaction involves a combination of electrolysis and the reductive quenching photocatalytic cycle of TPPT.
Collapse
Affiliation(s)
- Yingchun Ma
- School of Chemistry and Chemical Engineering, Kunming University, Kunming, Yunnan 650214, P. R. China
| | - Ping Yu
- School of Chemistry and Chemical Engineering, Kunming University, Kunming, Yunnan 650214, P. R. China
| | - Ruoyu Qin
- School of Chemistry and Chemical Engineering, Kunming University, Kunming, Yunnan 650214, P. R. China
| | - Run He
- School of Chemistry and Chemical Engineering, Kunming University, Kunming, Yunnan 650214, P. R. China
| | - Li Zeng
- School of Chemistry and Chemical Engineering, Kunming University, Kunming, Yunnan 650214, P. R. China
| | - Lou Shi
- School of Chemistry and Chemical Engineering, Kunming University, Kunming, Yunnan 650214, P. R. China
| | - Shaoguang Sun
- School of Chemistry and Chemical Engineering, Kunming University, Kunming, Yunnan 650214, P. R. China
- Medical College, Panzhihua University, Panzhihua 617000, P. R. China
| | - Deqiang Liang
- School of Chemistry and Chemical Engineering, Kunming University, Kunming, Yunnan 650214, P. R. China
| |
Collapse
|
4
|
Wang Q, Shao C, Hua R, Yin H, Chen FX. Me 3SiBr-promoted cascade electrophilic thiocyanation/cyclization of ortho-alkynylanilines to synthesize indole derivatives. Org Biomol Chem 2024; 22:4031-4035. [PMID: 38690868 DOI: 10.1039/d4ob00367e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
A Lewis acid-promoted electrophilic thiocyanation/cyclization of ortho-alkynylanilines for the synthesis of indole derivatives has been developed. The reaction utilizes Me3SiBr as the Lewis acid and N-thiocyanatosuccinimide as the thiocyanation reagent. A series of 2-aryl-3-thiocyanato indoles were prepared in moderate to high yields under mild conditions without metals and oxidants. It provides an efficient protocol for the construction of the indole skeleton and C-SCN and C-N bonds in one step as well.
Collapse
Affiliation(s)
- Qing Wang
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China.
| | - Chukai Shao
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China.
| | - Ruirui Hua
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China.
| | - Hongquan Yin
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China.
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China
| | - Fu-Xue Chen
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China.
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China
| |
Collapse
|
5
|
Zhang N, Cheng Z, Xia Y, Chen Z, Xue F, Zhang Y, Wang B, Wu S, Liu C. Electrochemical Oxidative 1,2-Dithiocyanation: Access to Functionalized Alkenes and Alkynes. J Org Chem 2024. [PMID: 38757807 DOI: 10.1021/acs.joc.4c00707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Reported herein is the 1,2-dithiocyanation of alkenes and alkynes via an efficient and facile electrochemical method. This approach not only showed a broad substrate scope and good functional-group compatibility but also avoided stoichiometric oxidants. Different from previous reports, various internal alkynes could be tolerated to provide tetra-substituted alkenes. Further gram-scale-up experiments and synthetic transformation demonstrated a potential application in organic synthesis. This process underwent a radical pathway, as evidenced by our mechanistic studies.
Collapse
Affiliation(s)
- Ning Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Zhen Cheng
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Ziren Chen
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Fei Xue
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Yonghong Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Bin Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Shaofeng Wu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Chenjiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| |
Collapse
|
6
|
Karmaker PG, Yang X. Recent Advancement on the Indirect or Combined Alternative Thiocyanate Sources for the Construction of S-CN Bonds. CHEM REC 2024; 24:e202300312. [PMID: 38085121 DOI: 10.1002/tcr.202300312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/22/2023] [Indexed: 03/10/2024]
Abstract
The process of thiocyanation is a notable chemical conversion owing to the extensive range of applications associated with thiocyanate compounds in the field of organic chemistry. In past centuries, the thiocyanation reaction incorporated metal thiocyanates or thiocyanate salts as sources of thiocyanate, which are environmentally detrimental and undesirable. In recent literature, there have been numerous instances where combined or indirect alternative sources of thiocyanate have been employed as agents for thiocyanation, showcasing their noteworthy applications. The present literature review focuses on elucidating the ramifications associated with the utilization of indirect or combined alternative sources of thiocyanate in various thiocyanation reactions.
Collapse
Affiliation(s)
- Pran Gopal Karmaker
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, China
| | - Xiupei Yang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, China
| |
Collapse
|
7
|
Vigier J, Gao M, Jubault P, Lebel H, Besset T. Divergent process for the catalytic decarboxylative thiocyanation and isothiocyanation of carboxylic acids promoted by visible light. Chem Commun (Camb) 2023; 60:196-199. [PMID: 38047933 DOI: 10.1039/d3cc04624a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
A divergent photoinduced selective synthesis of thiocyanate and isothiocyanate derivatives from readily available carboxylic acids was developed using N-thiocyanatosaccharin and a catalytic amount of base or acid. This molecular editing strategy allowed the functionalization of bioactive compounds. A mechanism for the transformation was proposed based on control experiments.
Collapse
Affiliation(s)
- Jordan Vigier
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France.
| | - Mélissa Gao
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France.
| | - Philippe Jubault
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France.
| | - Hélène Lebel
- Department of Chemistry and Center in Green Chemistry and Catalysis (CGCC), Université de Montréal, P.O. Box 6128, Station Downtown, Montréal, QC, H3C 3J7, Canada.
| | - Tatiana Besset
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France.
| |
Collapse
|
8
|
Patel K, Oginetz L, Marek I. Highly Diastereoselective Preparation of Tertiary Alkyl Thiocyanates en Route to Thiols by Stereoinvertive Nucleophilic Substitution at Nonclassical Carbocations. Org Lett 2023; 25:8474-8477. [PMID: 37982581 DOI: 10.1021/acs.orglett.3c03396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
An effective InBr3-catalyzed nucleophilic thiocyanation of cyclopropyl alcohols has been developed. The reaction takes place at the quaternary carbon stereocenter of the cyclopropyl carbinol with a complete inversion of configuration, offering a novel pathway for the creation of complex tertiary alkyl thiocyanates with high diastereopurity. These substitution reactions proceed under mild reaction conditions and tolerate several functional groups. Additionally, thiocyanates were converted to thiols using lithium aluminum hydride.
Collapse
Affiliation(s)
- Kaushalendra Patel
- Schulich Faculty of Chemistry and Resnick Sustainability Center for Catalysis, Technion - Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| | - Lior Oginetz
- Schulich Faculty of Chemistry and Resnick Sustainability Center for Catalysis, Technion - Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry and Resnick Sustainability Center for Catalysis, Technion - Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| |
Collapse
|
9
|
Partovi M, Rezayati S, Ramazani A, Ahmadi Y, Taherkhani H. Recyclable mesalamine-functionalized magnetic nanoparticles (mesalamine/GPTMS@SiO 2@Fe 3O 4) for tandem Knoevenagel-Michael cyclocondensation: grinding technique for the synthesis of biologically active 2-amino-4 H-benzo[ b]pyran derivatives. RSC Adv 2023; 13:33566-33587. [PMID: 38020042 PMCID: PMC10658220 DOI: 10.1039/d3ra06560j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
In the present study, mesalamine-functionalized on magnetic nanoparticles (mesalamine/GPTMS@SiO2@Fe3O4) is fabricated as an efficient and magnetically recoverable nanocatalyst. The as-prepared nanocatalyst was successfully synthesized in three steps using a convenient and low-cost method via modification of the surface of Fe3O4 nanoparticles with silica and GPTMS, respectively, to afford GPTMS@SiO2@Fe3O4. Finally, treatment with mesalamine as a powerful antioxidant generates the final nanocatalyst. Then, its structure was characterized by FT-IR, SEM, TEM, EDX, XRD, BET, VSM, and TGA techniques. The average size was found to be approximately 38 nm using TEM analysis and the average crystallite size was found to be approximately 27.02 nm using XRD analysis. In particular, the synthesized nanocatalyst exhibited strong thermal stability up to 400 °C and high magnetization properties. The activity of the synthesized nanocatalyst was evaluated in the tandem Knoevenagel-Michael cyclocondensation of various aromatic aldehydes, dimedone and malononitrile under a dry grinding method at room temperature to provide biologically active 2-amino-4H-benzo[b]pyran derivatives products in a short time with good yields. The presented procedure offers several advantages including gram-scale synthesis, good green chemistry metrics (GCM), easy fabrication of the catalyst, atom economy (AE), no use of column chromatography, and avoiding the generation of toxic materials. Furthermore, the nanocatalyst can be reused for 8 cycles with no loss of performance by using an external magnet.
Collapse
Affiliation(s)
- Mahdiyeh Partovi
- Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
| | - Sobhan Rezayati
- Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
- Department of Biotechnology, Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan Zanjan 45371-38791 Iran
| | - Yavar Ahmadi
- Department of Chemistry Education, Farhangian University P. O. Box 14665-889, Tehran Iran
| | - Hooman Taherkhani
- Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
| |
Collapse
|
10
|
Efficient thiocyanation of phenols and anilines in the CeBr3 / H2O2 system. MENDELEEV COMMUNICATIONS 2023. [DOI: 10.1016/j.mencom.2023.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
11
|
Maeda B, Aihara Y, Sato A, Kinoshita T, Murakami K. Photoinduced Synthesis of Thiocyanates through Hydrogen Atom Transfer and One-Pot Derivatization to Isothiocyanates. Org Lett 2022; 24:7366-7371. [PMID: 36194477 DOI: 10.1021/acs.orglett.2c02896] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photoinduced benzylic C-H thiocyanation is described. A series of alkyl thiocyanates were efficiently obtained by using Selectfluor as the oxidant. Moreover, we accomplished the one-pot isothiocyanation following the C-H thiocyanation. The thiocyanates and isothiocyanates were applied to the divergent transformation of pharmaceuticals.
Collapse
Affiliation(s)
- Bumpei Maeda
- Department of Chemistry, School of Science, Kwansei Gakuin University, 2-1 Gakuin, Sanda, Hyogo 669-1337, Japan
| | - Yusuke Aihara
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Kei Murakami
- Department of Chemistry, School of Science, Kwansei Gakuin University, 2-1 Gakuin, Sanda, Hyogo 669-1337, Japan.,JST-PRESTO, 7 Gobancho, Chiyoda, Tokyo 102-0076, Japan
| |
Collapse
|
12
|
Chen H, Shi X, Liu X, Zhao L. Recent progress of direct thiocyanation reactions. Org Biomol Chem 2022; 20:6508-6527. [PMID: 35942781 DOI: 10.1039/d2ob01018f] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thiocyanates are common in natural products, synthetic drugs and bioactive molecules. Many thiocyanate derivatives show excellent antibacterial, antiparasitic and anticancer activities. Thiocyanation can introduce SCN groups into parent molecules for constructing SCN-containing small organic molecules. Among them, the direct introduction method mainly includes nucleophilic reaction, electrophilic reaction and free radical reaction, which can simply and quickly introduce SCN groups at the target sites to construct thiocyanates, and has broad application prospects. In this review, we summarize the research progress of direct thiocyanation in recent years.
Collapse
Affiliation(s)
- Haixin Chen
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Xiaotian Shi
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Xiang Liu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Limin Zhao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| |
Collapse
|
13
|
Abbasi M, Nowrouzi N, Sedaghat H. Efficient thiocyanation of aromatic compounds using NH4SCN, DMSO and H2SO4. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Tao S, Huo A, Gao Y, Zhang X, Yang J, Du Y. PhICl2-Mediated Regioselective and Electrophilic Oxythio/Selenocyanation of o-(1-Alkynyl)benzoates: Access to Biologically Active S/SeCN-Containing Isocoumarins. Front Chem 2022; 10:859995. [PMID: 35665060 PMCID: PMC9158338 DOI: 10.3389/fchem.2022.859995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
The application of PhICl2/NH4SCN and PhICl2/KSeCN reagent systems to the synthesis of the biologically active S/SeCN-containing isocoumarins via a process involving thio/selenocyanation, enabled by thio/selenocyanogen chloride generated in situ, followed with an intramolecular lactonization was realized. Gram-scale synthesis, further derivatization to access C4 thio/selenocyanated Xyridin A and anti-tumor activities of the obtained products highlight the potential use of this method.
Collapse
Affiliation(s)
- Shanqing Tao
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Aiwen Huo
- Hebei Key Laboratory of State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, China
| | - Yan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xiangyang Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Jingyue Yang
- Hebei Key Laboratory of State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, China
- *Correspondence: Yunfei Du, ; Jingyue Yang,
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- *Correspondence: Yunfei Du, ; Jingyue Yang,
| |
Collapse
|
15
|
Bityukov OV, Kirillov AS, Serdyuchenko PY, Kuznetsova MA, Demidova VN, Vil' VA, Terent'ev AO. Electrochemical thiocyanation of barbituric acids. Org Biomol Chem 2022; 20:3629-3636. [PMID: 35420113 DOI: 10.1039/d2ob00343k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electrochemical thiocyanation of barbituric acids with NH4SCN was disclosed in an undivided cell under constant current conditions. The electrosynthesis is the most efficient at a record high current density (janode ≈50-70 mA cm-2). NH4SCN has a dual role as the source of the SCN group and as the electrolyte. Electrochemical thiocyanation of barbituric acids starts with the generation of (SCN)2 from the thiocyanate anion. The addition of thiocyanogen to the double bond of the enol tautomer of barbituric acid gives thiocyanated barbituric acid. A variety of thiocyanated barbituric acids bearing different functional groups were obtained in 18-95% yields and were shown to exhibit promising antifungal activity.
Collapse
Affiliation(s)
- Oleg V Bityukov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Andrey S Kirillov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Pavel Yu Serdyuchenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation. .,D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, Moscow 125047, Russian Federation
| | - Maria A Kuznetsova
- All-Russian Research Institute for Phytopathology, B. Vyazyomy, 143050, Moscow Region, Russian Federation
| | - Valentina N Demidova
- All-Russian Research Institute for Phytopathology, B. Vyazyomy, 143050, Moscow Region, Russian Federation
| | - Vera A Vil'
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| |
Collapse
|
16
|
Huang AX, Zhu HL, Zeng FL, Chen XL, Huang XQ, Qu LB, Yu B. 1-Acryloyl-2-cyanoindole: A Skeleton for Visible-Light-Induced Cascade Annulation. Org Lett 2022; 24:3014-3018. [PMID: 35420829 DOI: 10.1021/acs.orglett.2c00927] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1-Acryloyl-2-cyanoindoles were found to be novel and efficient skeletons in visible-light-induced persulfate-promoted cascade cyclization reactions. With this transition-metal-free photocatalytic procedure, various sulfonated/thiocyanated pyrrolo[1,2-a]indolediones were synthesized from 1-acryloyl-2-cyanoindoles with sulfonyl hydrazides/NH4SCN at room temperature under mild reaction conditions.
Collapse
Affiliation(s)
- An-Xiang Huang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Hu-Lin Zhu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Fan-Lin Zeng
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao-Lan Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xian-Qiang Huang
- School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Ling-Bo Qu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
17
|
Matsui D, Tanimori S. A quick and easy access to a series of thiocyanated enaminones and 2‐iminothiazolones using
PIDA
under mild conditions. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Daiki Matsui
- Department of Applied Life Sciences Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1‐1 Gakuencho, Nakaku, Sakai Osaka Japan
| | - Shinji Tanimori
- Department of Applied Life Sciences Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1‐1 Gakuencho, Nakaku, Sakai Osaka Japan
| |
Collapse
|
18
|
Belen’kii LI, Gazieva GA, Evdokimenkova YB, Soboleva NO. The literature of heterocyclic chemistry, Part XX, 2020. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
19
|
Rezayati S, Kalantari F, Ramazani A, Sajjadifar S, Aghahosseini H, Rezaei A. Magnetic Silica-Coated Picolylamine Copper Complex [Fe 3O 4@SiO 2@GP/Picolylamine-Cu(II)]-Catalyzed Biginelli Annulation Reaction. Inorg Chem 2021; 61:992-1010. [PMID: 34962386 DOI: 10.1021/acs.inorgchem.1c03042] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An efficient and heterogeneous novel magnetic silica-coated picolylaminecopper complex [Fe3O4@SiO2@GP/Picolylamine-Cu(II)] was synthesized, characterized, and employed as a magnetically recoverable nanocatalyst in Biginelli condensation for the preparation of biologically active 3,4-dihydropyrimidinones. Fe3O4@SiO2@GP/Picolylamine-Cu(II) was synthesized easily using chemical attachment of the picolylaminecompound on Fe3O4@SiO2@GP, followed by treatment with copper salt in ethanol under reflux conditions. Fe3O4@SiO2@GP/Picolylamine-Cu(II) was affirmed by various analyses such as Fourier transform infrared, thermogravimetric analysis, X-ray diffraction, vibrating-sample magnetometry, field-emission scanning electron microscopy, transmission electron microscopy, DLS, inductively coupled plasma, energy-dispersive X-ray spectrometry, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller. The resulting catalyst system was successfully used in the Biginelli reaction through a variety of compounds such as aromatic aldehyde, urea, and ethyl acetoacetate under solvent-free conditions or ethylene glycol at 80 °C and yielded the desired products with high conversions with powerful reusability. The current approach was convenient and clean, and only 0.01 g of the catalyst could be used to perform the reaction. The easy work-up procedure, gram-scale synthesis, usage of nontoxic solvent, improved yield, short reaction times, and high durability of the catalyst are several remarkable advantages of the current approach. Also, the Fe3O4@SiO2@GP/Picolylamine-Cu(II) nanocatalyst could be recycled by an external magnet for eight runs with only a significant loss in the product yields.
Collapse
Affiliation(s)
- Sobhan Rezayati
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Fatemeh Kalantari
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran.,Department of Biotechnology, Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, Zanjan 45371-38791, Iran
| | - Sami Sajjadifar
- Department of Chemistry, Payame Noor University, P.O. Box, Tehran 19395-4697, Iran
| | - Hamideh Aghahosseini
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Aram Rezaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| |
Collapse
|
20
|
Xiao J, Ai Z, Li X, Tao S, Zhao B, Wang X, Wang X, Du Y. Synthesis of 3-thiocyanated chromones via TCCA/NH4SCN-mediated cyclization/thiocyanation of alkynyl aryl ketones. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
21
|
Taherkhani H, Ramazani A, Sajjadifar S, Aghahosseini H, Rezaei A, Rezayati S. Grinding Synthesis of 2‐Amino‐4H‐benzo[
b
]pyran Derivatives Catalyzed By Highly Efficient GPTMS/Guanidine Protected Magnetic Nanoparticles**. ChemistrySelect 2021. [DOI: 10.1002/slct.202102931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hooman Taherkhani
- Department of Chemistry Faculty of Science University of Zanjan Zanjan 45371-38791 Iran
| | - Ali Ramazani
- Department of Chemistry Faculty of Science University of Zanjan Zanjan 45371-38791 Iran
- Department of Biotechnology Research Institute of Modern Biological Techniques (RIMBT) University of Zanjan Zanjan 45371-38791 Iran
| | - Sami Sajjadifar
- Department of Chemistry Payame Noor University PO BOX 19395-4697 Tehran Iran
| | - Hamideh Aghahosseini
- Department of Chemistry Faculty of Science University of Zanjan Zanjan 45371-38791 Iran
| | - Aram Rezaei
- Nano Drug Delivery Research Center Health Technology Institute Kermanshah University of Medical Sciences Kermanshah Iran
| | - Sobhan Rezayati
- Department of Chemistry Faculty of Science University of Zanjan Zanjan 45371-38791 Iran
| |
Collapse
|
22
|
Lyalin BV, Sigacheva VL, Kudinova AS, Neverov SV, Kokorekin VA, Petrosyan VA. Electrooxidation Is a Promising Approach to Functionalization of Pyrazole-Type Compounds. Molecules 2021; 26:4749. [PMID: 34443338 PMCID: PMC8400477 DOI: 10.3390/molecules26164749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 01/15/2023] Open
Abstract
The review summarizes for the first time the poorly studied electrooxidative functionalization of pyrazole derivatives leading to the C-Cl, C-Br, C-I, C-S and N-N coupling products with applied properties. The introduction discusses some aspects of aromatic hydrogen substitution. Further, we mainly consider our works on effective synthesis of the corresponding halogeno, thiocyanato and azo compounds using cheap, affordable and environmentally promising electric currents.
Collapse
Affiliation(s)
- Boris V. Lyalin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 47, 119991 Moscow, Russia; (B.V.L.); (V.L.S.); (A.S.K.); (S.V.N.); (V.A.P.)
| | - Vera L. Sigacheva
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 47, 119991 Moscow, Russia; (B.V.L.); (V.L.S.); (A.S.K.); (S.V.N.); (V.A.P.)
| | - Anastasia S. Kudinova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 47, 119991 Moscow, Russia; (B.V.L.); (V.L.S.); (A.S.K.); (S.V.N.); (V.A.P.)
- Institute of Pharmacy, Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8, Bldg. 2, 119991 Moscow, Russia
| | - Sergey V. Neverov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 47, 119991 Moscow, Russia; (B.V.L.); (V.L.S.); (A.S.K.); (S.V.N.); (V.A.P.)
| | - Vladimir A. Kokorekin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 47, 119991 Moscow, Russia; (B.V.L.); (V.L.S.); (A.S.K.); (S.V.N.); (V.A.P.)
- Institute of Pharmacy, Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8, Bldg. 2, 119991 Moscow, Russia
- All-Russian Research Institute of Phytopathology, Institute Str. 5, 143050 Bol’shiye Vyazemy, Russia
| | - Vladimir A. Petrosyan
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 47, 119991 Moscow, Russia; (B.V.L.); (V.L.S.); (A.S.K.); (S.V.N.); (V.A.P.)
| |
Collapse
|
23
|
Tao S, Xiao J, Li Y, Sun F, Du Y. PhICl
2
/
NH
4
SCN‐Mediated
Oxidative Regioselective Thiocyanation of Pyridin‐2(
1
H
)‐ones. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shanqing Tao
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency, School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 China
| | - Jiaxi Xiao
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency, School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 China
| | - Yadong Li
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency, School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 China
| | - Fengxia Sun
- College of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology; Hebei Research Center of Pharmaceutical and Chemical Engineering Shijiazhuang Hebei 050018 China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency, School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 China
| |
Collapse
|
24
|
Chopra PKPG, Lambat TL, Mahmood SH, Chaudhary RG, Banerjee S. Sulfamic Acid as Versatile Green Catalyst Used For Synthetic Organic Chemistry: A Comprehensive Update. ChemistrySelect 2021. [DOI: 10.1002/slct.202101635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Trimurti L. Lambat
- Department of Chemistry Manoharbhai Patel College of Arts Commerce & Science Deori- Gondia 441901 Maharashtra India
| | - Sami H. Mahmood
- Department of Physics The University of Jordan Amman 11942 Jordan & Department of Physics and Astronomy Michigan State University East Lansing MI 48824 USA
| | - Ratiram G. Chaudhary
- P.G. Department of Chemistry S. K. Porwal College Kamptee 441001 Maharashtra India
| | - Subhash Banerjee
- Department of Chemistry Guru Ghasidas Vishwavidyalaya Bilaspur 495009 Chhattisgarh India
| |
Collapse
|
25
|
Hosseini-Sarvari M, Sarvestani AM. N-doped ZnO as an efficient photocatalyst for thiocyanation of indoles and phenols under visible-light. Photochem Photobiol Sci 2021; 20:903-911. [PMID: 34241818 DOI: 10.1007/s43630-021-00068-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/21/2021] [Indexed: 11/26/2022]
Abstract
In this study, nitrogen-doped ZnO nanorods (N-ZnO NRs) were synthesized via a very simple hydrothermal process, fully characterized, and this photocatalyst was successfully exploited in thiocyanation reactions of indoles and phenols at room temperature under visible light irradiation. Two important classes of aromatic compounds indoles, and phenols using N-ZnO NRs as photocatalyst treated with ammonium thiocyanate as thiocyanation agent formed the corresponding thiocyano compounds in good yields. Nitrogen is one of the most appropriate p-type dopants that is nontoxic, similar to the atomic radius to oxygen, and lower electronegativity and ionization energy than the O atom. Therefore, the N doping converts ZnO into the p-type ZnO semiconductor structure. This potent, simple, and versatile protocol afforded thiocyanation reactions of indole and phenols under visible light. The reactions proceeded through a radical pathway by applying air molecular oxygen as a low cost and environmentally friendly terminal oxidant. The proposed mechanism based on control experiments was thoroughly described.
Collapse
Affiliation(s)
- Mona Hosseini-Sarvari
- Nano Photocatalysis Lab, Department of Chemistry, Shiraz University, Shiraz, 7194684795, Islamic Republic of Iran.
| | - Abdollah Masoudi Sarvestani
- Nano Photocatalysis Lab, Department of Chemistry, Shiraz University, Shiraz, 7194684795, Islamic Republic of Iran
| |
Collapse
|
26
|
NaSCN–(NH4)2Ce(NO3)6 system in heterocycle thiocyanation: synthesis of novel highly potent broad-spectrum fungicides for crop protection. Chem Heterocycl Compd (N Y) 2021. [DOI: 10.1007/s10593-021-02938-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Gao M, Vuagnat M, Chen MY, Pannecoucke X, Jubault P, Besset T. Design and Use of Electrophilic Thiocyanating and Selenocyanating Reagents: An Interesting Trend for the Construction of SCN- and SeCN-Containing Compounds. Chemistry 2021; 27:6145-6160. [PMID: 33283371 DOI: 10.1002/chem.202004974] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 01/01/2023]
Abstract
Organothiocyanate and organoselenocyanate compounds are of paramount importance in organic chemistry as they are key intermediates to access sulfur- and selenium-containing compounds. Therefore, among the different synthetic pathways to get SCN- and SeCN-containing molecules, original methodologies using electrophilic reagents have recently been explored. This Minireview will showcase the recent advances that have been made. In particular, the design of several electrophilic sources and their applications for the thiocyanation and the selenocyanation of various classes of compounds will be highlighted and discussed.
Collapse
Affiliation(s)
- Mélissa Gao
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Martin Vuagnat
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Mu-Yi Chen
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Xavier Pannecoucke
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Philippe Jubault
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Tatiana Besset
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| |
Collapse
|
28
|
Todorović U, Klose I, Maulide N. Straightforward Access to Thiocyanates via Dealkylative Cyanation of Sulfoxides. Org Lett 2021; 23:2510-2513. [PMID: 33724046 PMCID: PMC8022320 DOI: 10.1021/acs.orglett.1c00460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Thiocyanates, versatile
building blocks in organic synthesis, are
shown to be easily accessible via an interrupted Pummerer reaction
of sulfoxides. This facile dealkylative functionalization proceeds
under mild conditions through electrophilic activation of the sulfoxide
partner. The resulting thiocyanate itself can serve as a handle for
diversification in a straightforward one-pot procedure.
Collapse
Affiliation(s)
- Uroš Todorović
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Immo Klose
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Nuno Maulide
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| |
Collapse
|
29
|
Li Y, Huang Z, Mo G, Jiang W, Zheng C, Feng P, Ruan Z. Direct Electrochemical Synthesis of
Sulfur‐Containing
Triazolium Inner Salts. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000586] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yueheng Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Zhixing Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Guangquan Mo
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Wei Jiang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Chengwei Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Pengju Feng
- Department of Chemistry, Jinan University Guangzhou Guangdong 510632 China
| | - Zhixiong Ruan
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou Guangdong 511436 China
| |
Collapse
|
30
|
“Metal-free” synthesis and antifungal activity of 3-thiocyanatopyrazolo[1,5-a]pyrimidines. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3131-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
31
|
Hu G, Li P, Zhou Z, Yang F, Xu S, Fan H, Zhao X, Zhang X. NBS-assisted palladium-catalyzed bromination/cross-coupling reaction of 2-alkynyl arylazides with KSCN: an efficient method to synthesize 3-thiocyanindoles. NEW J CHEM 2021. [DOI: 10.1039/d0nj05894g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An efficient NBS-assisted palladium-catalyzed bromination/cross-coupling synthesis of 3-thiocyanindoles from 2-alkynyl arylazides with KSCN has been described.
Collapse
Affiliation(s)
- Guiwen Hu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Ping Li
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Zhiqiang Zhou
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Fan Yang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Shijie Xu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Hui Fan
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Xuechun Zhao
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Xiaoxiang Zhang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| |
Collapse
|
32
|
Divyavani C, Padmaja P, Ugale VG, Reddy PN. A Review on Thiocyanation of Indoles. Curr Org Synth 2020; 18:233-247. [PMID: 33272188 DOI: 10.2174/1570179417999201203211855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The thiocyanation of indoles is a direct way for carbon-sulfur bond formation to access 3-thiocyanato-indoles. 3-thiocyanato-indoles exhibit potent biological and pharmacological activities and also serve as building blocks to synthesize many biologically active sulfur-containing indole derivatives. OBJECTIVE The aim of this review is to highlight different approaches for the thiocyanation of indoles focusing on its scope and mechanism. CONCLUSION In this review, we have summarized various methods for the thiocyanation of indoles. Selection of new methods for the preparation of 3-thiocyanato-indoles will be done. The mechanistic aspects and significance of the methods are also briefly discussed.
Collapse
Affiliation(s)
- Chitteti Divyavani
- Department of Chemistry, Sri Padmavathi Women's Degree & PG College, Tirupati, Andhra Pradesh, India
| | - Pannala Padmaja
- Fluoro & Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Vinod G Ugale
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur- 425405, Maharashtra, India
| | | |
Collapse
|
33
|
Kokorekin VA, Neverov SV, Kuzina VN, Petrosyan VA. A New Method for the Synthesis of 3-Thiocyanatopyrazolo[1,5- a]pyrimidines. Molecules 2020; 25:E4169. [PMID: 32933044 PMCID: PMC7570695 DOI: 10.3390/molecules25184169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 11/20/2022] Open
Abstract
In this article, we demonstrate how an original effective "metal-free" and "chromatography-free" route for the synthesis of 3-thiocyanatopyrazolo[1,5-a]pyrimidines has been developed. It is based on electrooxidative (anodic) C-H thiocyanation of 5-aminopyrazoles by thiocyanate ion leading to 4-thiocyanato-5-aminopyrazoles (stage 1, yields up to 87%) following by their chemical condensation with 1,3-dicarbonyl compounds or their derivatives (stage 2, yields up to 96%). This method is equally effective for the synthesis of 3-thiocyanatopyrazolo[1,5-a]pyrimidines, both without substituents and with various donor (acceptor) substituents in the pyrimidine ring.
Collapse
Affiliation(s)
- Vladimir A. Kokorekin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, 119991 Moscow, Russia; (V.A.K.); (S.V.N.)
- Institute of Pharmacy, Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya str. 8, bldg. 2, 119991 Moscow, Russia;
- All-Russian Research Institute of Phytopathology, Institute str. 5, Bol’shiye Vyazemy, 143050 Moscow, Russia
| | - Sergey V. Neverov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, 119991 Moscow, Russia; (V.A.K.); (S.V.N.)
| | - Vera N. Kuzina
- Institute of Pharmacy, Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya str. 8, bldg. 2, 119991 Moscow, Russia;
| | - Vladimir A. Petrosyan
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, 119991 Moscow, Russia; (V.A.K.); (S.V.N.)
| |
Collapse
|