1
|
Shen SM, Yu DD, Ke LM, Yao LG, Su MZ, Guo YW. Polyoxygenated cembrane-type diterpenes from the Hainan soft coral Lobophytum crassum as a promising source of anticancer agents with ErbB3 and ROR1 inhibitory potential. Acta Pharmacol Sin 2025; 46:196-207. [PMID: 39075227 PMCID: PMC11696519 DOI: 10.1038/s41401-024-01347-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/28/2024] [Indexed: 07/31/2024]
Abstract
A detailed chemical investigation of the Hainan soft coral Lobophytum crassum led to the identification of a class of polyoxygenated cembrane-type macrocyclic diterpenes (1-28), including three new flexible cembranoids, lobophycrasins E-G (2-4), and twenty-five known analogues. Their structures were elucidated by combining extensive spectroscopic data analysis, quantum mechanical-nuclear magnetic resonance (QM-NMR) methods, the modified Mosher's method, X-ray diffraction analysis, and comparison with data reported in the literature. Bioassays revealed that sixteen cembranoids inhibited the proliferation of H1975, MDA-MB231, A549, and H1299 cells. Among them, Compounds 10, 17, and 20 exhibited significant antiproliferative activities with IC50 values of 1.92-8.82 μM, which are very similar to that of the positive control doxorubicin. Molecular mechanistic studies showed that the antitumour activity of Compound 10 was closely related to regulation of the ROR1 and ErbB3 signalling pathways. This study may provide insight into the discovery and utilization of marine macrocyclic cembranoids as lead compounds for anticancer drugs.
Collapse
Affiliation(s)
- Shou-Mao Shen
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
- School of Pharmacy, Yancheng Teachers University, Yancheng, 224002, China
| | - Dan-Dan Yu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| | - Lin-Mao Ke
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| | - Li-Gong Yao
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| | - Ming-Zhi Su
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
| | - Yue-Wei Guo
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
2
|
Zhang D, Li Y, Li X, Han X, Wang Z, Li G. A new capnosane-type diterpenoid from the South China sea soft coral Lobophytum pauciflorum. Nat Prod Res 2024; 38:97-102. [PMID: 35924737 DOI: 10.1080/14786419.2022.2106568] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/24/2022] [Indexed: 10/16/2022]
Abstract
A new rare capnosane-type diterpenoid (1) along with two known compounds sarcophyolides D (2) and arbolide C (3), were isolated from the soft coral Lobophytum pauciflorum collected at Xisha Islands in the South China Sea. The structure of 1 was established based on comprehensive spectroscopic data, literature comparison, and quantum chemical calculations. Compound 1 exhibited moderate anti-inflammatory activities in the zebrafish model at a concentration of 20 μM.
Collapse
Affiliation(s)
- Di Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Yueying Li
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Xiaolei Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Xiao Han
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Zhe Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Guoqiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| |
Collapse
|
3
|
Abstract
Covering: January to December 2021This review covers the literature published in 2021 for marine natural products (MNPs), with 736 citations (724 for the period January to December 2021) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1425 in 416 papers for 2021), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of the number of authors, their affiliations, domestic and international collection locations, focus of MNP studies, citation metrics and journal choices is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.,School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
4
|
Zhang L, Yang M, Chen ZH, Ge ZY, Li SW, Yan XY, Yao LG, Liang LF, Guo YW. Cembrane Diterpenes Possessing Nonaromatic Oxacycles from the Hainan Soft Coral Sarcophyton mililatensis. Int J Mol Sci 2023; 24:1979. [PMID: 36768306 PMCID: PMC9915928 DOI: 10.3390/ijms24031979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Documents on the chemical composition of the soft coral Sarcophyton mililatensis are sparse. The present investigation of the Hainan soft coral S. mililatensis resulted in the discovery of six new cembrane diterpenes, sarcoxacyclols A-F (1-6) and four known analogs (7-10). Their structures were elucidated by extensive spectroscopic analysis along with a comparison with the data in current literature. The nonaromatic oxacycles in their structures were the rarely found tetrahydrofuran ether across C-1 and C-12 and tetrahydropyran ether across C-1 and C-11, respectively. Moreover, the absolute configuration of compound 4 was established unambiguously by X-ray diffraction analysis using Ga Kα radiation (λ = 1.34139 Å). Based on the biogenetical consideration, the absolute configurations of other five new compounds were tentatively assumed. Assessment of the bioactivity for these secondary metabolites revealed that compound 1 exhibited significant tumor necrosis factor (TNF)-α inhibitory activity (IC50 = 9.5 μmol/L), similar to the positive control dexamethasone (IC50 = 8.7 μmol/L), but no obvious cytotoxicity towards RAW264.7 cells (CC50 > 50 μmol/L). The preliminary molecular docking suggested the crucial roles of the hydroxyl and acetoxyl groups in the computational prediction of the binding mode between the diterpene and the protein.
Collapse
Affiliation(s)
- Ling Zhang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Min Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Zi-Hui Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Zeng-Yue Ge
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Song-Wei Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Xian-Yun Yan
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Li-Gong Yao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Lin-Fu Liang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao 266237, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
5
|
Isosarcophytoxide Derivatives with a 2,5-Dihydrofuran Moiety from the Soft Coral Sarcophyton cinereum. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020641. [PMID: 36677699 PMCID: PMC9862023 DOI: 10.3390/molecules28020641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
The present chemical investigation on the organic extract of the soft coral Sarcophyton cinereum has contributed to the isolation of four new cembranoids: 16β- and 16α-hydroperoxyisosarcophytoxides (1 and 2), 16β- and 16α-methoxyisosarcophytoxides (3 and 4), and a known cembranoid, lobocrasol (5). The structures of all isolates were elucidated by detailed spectroscopic analysis. Their structures were characterized by a 2,5-dihydrofuran moiety, of which the relative configuration was determined by DU8-based calculation for long-range coupling constants (4JH,H). The cytotoxicity and immunosuppressive activities of all isolates were evaluated in this study.
Collapse
|
6
|
Liu J, Gu YC, Su MZ, Guo YW. Chemistry and bioactivity of secondary metabolites from South China Sea marine fauna and flora: recent research advances and perspective. Acta Pharmacol Sin 2022; 43:3062-3079. [PMID: 36104434 PMCID: PMC9712606 DOI: 10.1038/s41401-022-00980-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/09/2022] [Indexed: 11/09/2022]
Abstract
Marine organisms often produce a variety of metabolites with unique structures and diverse biological activities that enable them to survive and struggle in the extremely challenging environment. During the last two decades, our group devoted great effort to the discovery of pharmaceutically interesting lead compounds from South China Sea marine plants and invertebrates. We discovered numerous marine secondary metabolites spanning a wide range of structural classes, various biosynthetic origins and various aspects of biological activities. In a series of reviews, we have summarized the bioactive natural products isolated from Chinese marine flora and fauna found during 2000-2012. The present review provides an updated summary covering our latest research progress and development in the last decade (2012-2022) highlighting the discovery of over 400 novel marine secondary metabolites with promising bioactivities from South China Sea marine organisms.
Collapse
Affiliation(s)
- Jiao Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Ming-Zhi Su
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
| |
Collapse
|
7
|
Du YQ, Chen J, Wu MJ, Zhang HY, Liang LF, Guo YW. Uncommon Capnosane Diterpenes with Neuroprotective Potential from South China Sea Soft Coral Sarcophyton boettgeri. Mar Drugs 2022; 20:602. [PMID: 36286428 PMCID: PMC9604702 DOI: 10.3390/md20100602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 01/10/2024] Open
Abstract
The first investigation of the South China Sea soft coral Sarcophyton boettgeri afforded five new capnosane diterpenes, sarboettgerins A-E (1-5), together with one known related compound, pavidolide D (6). Their structures, including absolute configurations, were elucidated by the extensive spectroscopic analysis, 13C NMR calculations, and X-ray diffraction. Among them, new compounds 1-5 were featured by the rarely encountered Z-geometry double bond Δ1 within the 5/11-fused bicyclic capnosane carbon framework. Plausible biogenetic relationships of all isolates were proposed, and they might give an insight into future biomimetic synthesis of these novel compounds. In an in vitro bioassay, compound 5 displayed potent anti-neuroinflammatory activity against LPS-induced NO release in BV-2 microglial cells, which might be developed as a new type of potential neuroprotective agent in future.
Collapse
Affiliation(s)
- Ye-Qing Du
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555, Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Jing Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555, Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Meng-Jun Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555, Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hai-Yan Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555, Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Lin-Fu Liang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha 410004, China
| | - Yue-Wei Guo
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555, Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao 266237, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
8
|
Chen B, Qiu P, Xu B, Zhao Q, Gu YC, Fu L, Bi S, Lan L, Wang CY, Guo YW. Cytotoxic and Antibacterial Isomalabaricane Terpenoids from the Sponge Rhabdastrella globostellata. JOURNAL OF NATURAL PRODUCTS 2022; 85:1799-1807. [PMID: 35767002 DOI: 10.1021/acs.jnatprod.2c00348] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nine new isomalabaricane terpenoids (1-9) were isolated from the sponge Rhabdastrella globostellata of Ximao Island, together with 13 known ones (10-22). The structures were established by spectroscopic data interpretation and chemical calculations, as well as by comparison with spectroscopic data of known compounds. Notably, of the new isolates, hainanstelletin A (5) is the first representative of a nitrogenous isomalabaricane. The isolated compounds were evaluated against several cancer cell lines and two bacterial pathogens. In addition, moderate to strong antibacterial activities against Streptococcus pyogenes were also detected among geometric isomers 1, 2, and 10-12, with minimum inhibitory concentrations of 0.1-1.8 μg/mL.
Collapse
Affiliation(s)
- Bao Chen
- Drug Discovery Shandong Laboratory, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, P. R. China
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China
| | - Peiju Qiu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China
| | - Baofu Xu
- Drug Discovery Shandong Laboratory, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, P. R. China
| | - Qingmin Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, P. R. China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, P. R. China
| | - Yu-Cheng Gu
- Jealott's Hill International Research Centre, Syngenta, Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Lei Fu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China
| | - Shijie Bi
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China
| | - Lefu Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, P. R. China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, P. R. China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China
| | - Yue-Wei Guo
- Drug Discovery Shandong Laboratory, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, P. R. China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, P. R. China
| |
Collapse
|
9
|
Shen SM, Appendino G, Guo YW. Pitfalls in the structural elucidation of small molecules. A critical analysis of a decade of structural misassignments of marine natural products. Nat Prod Rep 2022; 39:1803-1832. [PMID: 35770685 DOI: 10.1039/d2np00023g] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: July 2010 to August 2021This article summarizes more than 200 cases of misassigned marine natural products reported between July 2010 and August 2021, sorting out errors according to the structural elements. Based on a comparative analysis of the original and the revised structures, major pitfalls still plaguing the structural elucidation of small molecules were identified, emphasizing the role of total synthesis, crystallography, as well as chemical- and biosynthetic logic to complement spectroscopic data. Distinct "trends" in natural product misassignment are evident between compounds of marine and plant origin, with an overall much lower incidence of "impossible" structures within misassigned marine natural products.
Collapse
Affiliation(s)
- Shou-Mao Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Giovanni Appendino
- Dipartimento di Scienze del Farmaco, Universitá degli Studi del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,Drug Discovery Shandong Laboratory, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| |
Collapse
|