1
|
Wang J, Li H, Wang T, Xie H, Ruan Y, Zhang C. Research on the anti-hepatic fibrosis effects and active components of the medicinal plant Tithonia diversifolia. Fitoterapia 2025; 180:106317. [PMID: 39608469 DOI: 10.1016/j.fitote.2024.106317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/13/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND The medicinal folk plant Tithonia diversifolia A. Gray has traditionally been used to treat hepatitis and liver cancer. However, the anti-fibrotic effect of this plant extract and its main active substances remain unclear. OBJECTIVE This study aims to elucidate the anti-fibrotic effect of T. diversifolia ethanol extract, identify the main active substances, and explore their possible molecular mechanisms. METHODS Firstly, carbon tetrachloride (CCl4) was injected intraperitoneally to induce liver fibrosis in mice to investigate the protective effect of T. diversifolia ethanol extract. Then, thirty compounds in this extract were identified through liquid chromatography-mass spectrometry (LC-MS/MS) analysis, column chromatography, and spectroscopic analysis. In addition, the anti-fibrotic effect of sesquiterpene lactone compounds were investigated on TGF-β-induced hepatic stellate cell activation. RESULTS The T. diversifolia ethanol extract significantly inhibits symptoms of carbon tetrachloride-induced liver fibrosis and the collagen deposition in pathological tissues by suppressing the protein expression of various pro-fibrotic factors. A comprehensive profile of thirty-one compounds was established, including nine sesquiterpenes, six phenolic acids, six fatty acids, five phenylpropanoids, and three flavonoids. Notably, one previously unreported sesquiterpene lactone, namely 1β-ethoxydiversifolin 3-O-methyl ether (1), together with twenty-nine known compounds were obatined. Sesquiterpene Tagitinin C shows significant anti-fibrotic effects on TGFβ1-induced HSC-T6 activation by inducing cell apoptosis and regulating the TGF-β1/Smad pathway. CONCLUSION The above results indicate that the T. diversifolia extract can effectively alleviate liver fibrosis, with sesquiterpene lactones being a major component. In the future, the germacranolides-type of sesquiterpene lactone Tagitinin C can be developed as a precursor compound for anti-fibrotic therapy.
Collapse
Affiliation(s)
- Jialin Wang
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Haini Li
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ting Wang
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Haifeng Xie
- Chengdu Biopurity Phytochemicals Ltd., Chengdu 611131, China
| | - Yang Ruan
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Chaofeng Zhang
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
2
|
Ding AX, Shan YM, Li CY, Qin GQ, Chen T, Wang Q, Hu XG, Guo PJ, Yu HJ, Wang WQ, Xuan LJ. Sesquiterpene lactones from Tithonia diversifolia with ferroptosis-inducing activities. PHYTOCHEMISTRY 2024; 226:114219. [PMID: 38997098 DOI: 10.1016/j.phytochem.2024.114219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/14/2024]
Abstract
Eight previously undescribed sesquiterpene lactones (1-8), together with six known ones (9-14) were isolated from the aerial parts of Tithonia diversifolia (Hemsl.) A. Gray. The absolute configurations of these compounds were elucidated using HRMS, NMR spectroscopy, optical rotation measurements, X-ray crystallography, and ECD. Among them, sesquiterpene lactones 2-4 share a unique carbon skeleton with a rare C-3/C-4 ring-opened structure. Compounds 1 and 8 showed moderate inhibitory effects toward CT26 murine colon carcinoma cells by promoting lipid ROS production, highlighting their potential as ferroptosis inducers.
Collapse
Affiliation(s)
- Ao-Xue Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Yi-Ming Shan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Chen-Yue Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Guo-Qing Qin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Tong Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Qing Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Xiang-Gang Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Peng-Ju Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Hai-Jun Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Wen-Qiong Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China.
| | - Li-Jiang Xuan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
3
|
Laurella LC, Mirakian NT, Garcia MN, Grasso DH, Sülsen VP, Papademetrio DL. Sesquiterpene Lactones as Promising Candidates for Cancer Therapy: Focus on Pancreatic Cancer. Molecules 2022; 27:3492. [PMID: 35684434 PMCID: PMC9182036 DOI: 10.3390/molecules27113492] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease which confers to patients a poor prognosis at short term. PDAC is the fourth leading cause of death among cancers in the Western world. The rate of new cases of pancreatic cancer (incidence) is 10 per 100,000 but present a 5-year survival of less than 10%, highlighting the poor prognosis of this pathology. Furthermore, 90% of advanced PDAC tumor present KRAS mutations impacting in several oncogenic signaling pathways, many of them associated with cell proliferation and tumor progression. Different combinations of chemotherapeutic agents have been tested over the years without an improvement of significance in its treatment. PDAC remains as one the more challenging biomedical topics thus far. The lack of a proper early diagnosis, the notable mortality statistics and the poor outcome with the available therapies urge the entire scientific community to find novel approaches against PDAC with real improvements in patients' survival and life quality. Natural compounds have played an important role in the process of discovery and development of new drugs. Among them, terpenoids, such as sesquiterpene lactones, stand out due to their biological activities and pharmacological potential as antitumor agents. In this review, we will describe the sesquiterpene lactones with in vitro and in vivo activity against pancreatic tumor cells. We will also discuss the mechanism of action of the compounds as well as the signaling pathways associated with their activity.
Collapse
Affiliation(s)
- Laura Cecilia Laurella
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET-Universidad de Buenos Aires, Junín 956, Piso 2, Buenos Aires CP 1113, Argentina;
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina;
| | - Nadia Talin Mirakian
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina;
| | - Maria Noé Garcia
- Cátedra de Inmunología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina;
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Junín 956, Piso 4, Buenos Aires CP 1113, Argentina;
| | - Daniel Héctor Grasso
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Junín 956, Piso 4, Buenos Aires CP 1113, Argentina;
- Cátedra de Fisiopatología, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina
| | - Valeria Patricia Sülsen
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET-Universidad de Buenos Aires, Junín 956, Piso 2, Buenos Aires CP 1113, Argentina;
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina;
| | - Daniela Laura Papademetrio
- Cátedra de Inmunología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina;
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Junín 956, Piso 4, Buenos Aires CP 1113, Argentina;
| |
Collapse
|