1
|
Yang Z, Arnoux M, Hazelard D, Hughes OR, Nabarro J, Whitwood AC, Fascione MA, Spicer CD, Compain P, Unsworth WP. Expanding the scope of the successive ring expansion strategy for macrocycle and medium-sized ring synthesis: unreactive and reactive lactams. Org Biomol Chem 2024; 22:2985-2991. [PMID: 38526035 DOI: 10.1039/d4ob00285g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
New methods are described that expand the scope of the Successive Ring Expansion (SuRE) with respect to synthetically challenging lactams. A protocol has been developed for use with 'unreactive' lactams, enabling SuRE reactions to be performed on subsrates that fail under previously established conditions. Ring expansion is also demonstarted on 'reactive' lactams derived from iminosugars for the first time. The new SuRE methods were used to prepare a diverse array of medium-sized and macrocyclic lactams and lactones, which were evaluted in an anti-bacterial assay against E. coli BW25113WT.
Collapse
Affiliation(s)
- Zhongzhen Yang
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Marion Arnoux
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg, Univ. de Haute-Alsace, CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France.
| | - Damien Hazelard
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg, Univ. de Haute-Alsace, CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France.
| | - Owen R Hughes
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
- York Biomedical Research Institute, University of York, Heslington, YO10 5DD, UK
| | - Joe Nabarro
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
- York Biomedical Research Institute, University of York, Heslington, YO10 5DD, UK
| | - Adrian C Whitwood
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Martin A Fascione
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
- York Biomedical Research Institute, University of York, Heslington, YO10 5DD, UK
| | - Christopher D Spicer
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
- York Biomedical Research Institute, University of York, Heslington, YO10 5DD, UK
| | - Philippe Compain
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg, Univ. de Haute-Alsace, CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France.
| | - William P Unsworth
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
2
|
Ashikari Y, Yoshioka R, Yonekura Y, Yoo DE, Okamoto K, Nagaki A. Flowmicro In-Line Analysis-Driven Design of Reactions mediated by Unstable Intermediates: Flash Monitoring Approach. Chemistry 2024:e202303774. [PMID: 38216535 DOI: 10.1002/chem.202303774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/14/2024]
Abstract
The direct observation of reactive intermediates is an important issue for organic synthesis. However, intermediates with an extreme instability are hard to be monitored by common spectroscopic methods such as FTIR. We have developed synthetic method utilizing flow microreactors, which enables a generation and reactions of unstable intermediates. Herein we report that, based on our flowmicro techniques, we developed an in-line analysis method for reactive intermediates in increments of milliseconds. We demonstrated the direct observation of the living and dead species of the anionic polymerization of alkyl methacrylates. The direct information of the living species enabled the anionic polymerization and copolymerization of oligo(ethylene glycol) methyl ether methacrylates, which is the important but difficult reaction in the conventional method.
Collapse
Affiliation(s)
- Yosuke Ashikari
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita-10 Nishi-8 Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Rikako Yoshioka
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita-10 Nishi-8 Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Yuya Yonekura
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita-10 Nishi-8 Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
- TOHO Chemical Industry Co., Ltd., 5-2931 Urago-cho, Yokosuka, Kanagawa, 237-0062, Japan
| | - Dong-Eun Yoo
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita-10 Nishi-8 Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Kazuhiro Okamoto
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita-10 Nishi-8 Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Aiichiro Nagaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita-10 Nishi-8 Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| |
Collapse
|
3
|
Azizova LR, Kulik TV, Palianytsia BB, Ilchenko MM, Telbiz GM, Balu AM, Tarnavskiy S, Luque R, Roldan A, Kartel MT. The Role of Surface Complexes in Ketene Formation from Fatty Acids via Pyrolysis over Silica: from Platform Molecules to Waste Biomass. J Am Chem Soc 2023; 145:26592-26610. [PMID: 38047620 PMCID: PMC10722514 DOI: 10.1021/jacs.3c06966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023]
Abstract
Fatty acids (FA) are the main constituents of lipids and oil crop waste, considered to be a promising 2G biomass that can be converted into ketenes via catalytic pyrolysis. Ketenes are appraised as promising synthons for the pharmaceutical, polymer, and chemical industries. Progress in the thermal conversion of short- and long-chain fatty acids into ketenes requires a deep understanding of their interaction mechanisms with the nanoscale oxide catalysts. In this work, the interactions of fatty acids with silica are investigated using a wide range of experimental and computational techniques (TPD MS, DFT, FTIR, in situ IR, equilibrium adsorption, and thermogravimetry). The adsorption isotherms of linear and branched fatty acids C1-C6 on the silica surface from aqueous solution have been obtained. The relative quantities of different types of surface complexes, as well as kinetic parameters of their decomposition, were calculated. The formation of surface complexes with a coordination bond between the carbonyl oxygens and silicon atoms in the surface-active center, which becomes pentacoordinate, was confirmed by DFT calculations, in good agreement with the IR feature at ∼1680 cm 1. Interestingly, ketenes release relate to these complexes' decomposition as confirmed by the thermal evolution of the absorption band (1680 cm-1) synchronously with the TPD peak of the ketene molecular ion. The established regularities of the ketenezation are also observed for the silica-induced pyrolysis of glyceryl trimyristate and real waste, rapeseed meals.
Collapse
Affiliation(s)
- Liana R. Azizova
- School
of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, U.K.
- Chuiko
Institute of Surface Chemistry, National
Academy of Science of Ukraine, Kyiv 03164, Ukraine
| | - Tetiana V. Kulik
- Chuiko
Institute of Surface Chemistry, National
Academy of Science of Ukraine, Kyiv 03164, Ukraine
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Borys B. Palianytsia
- Chuiko
Institute of Surface Chemistry, National
Academy of Science of Ukraine, Kyiv 03164, Ukraine
- Departamento
de Química Orgánica, Universidad
de Córdoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A,
Km 396, Cordoba E14014, Spain
| | - Mykola M. Ilchenko
- Institute
of Molecular Biology and Genetics, National Academy of Science of
Ukraine, 150 Zabolotnogo Str., Kyiv 03680, Ukraine
| | - German M. Telbiz
- National
Academy of Science of Ukraine, L. V. Pisarzhevsky
Institute of Physical Chemistry, Nauky Av. 31, Kyiv 03039, Ukraine
| | - Alina M. Balu
- Departamento
de Química Orgánica, Universidad
de Córdoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A,
Km 396, Cordoba E14014, Spain
| | - Sergiy Tarnavskiy
- Institute
of Molecular Biology and Genetics, National Academy of Science of
Ukraine, 150 Zabolotnogo Str., Kyiv 03680, Ukraine
| | - Rafael Luque
- Universitá
degli studi Mediterranea di Reggio Calabria (UNIRC), DICEAM, Via Zehender
(giá via Graziella), Loc. Feo di Vito, I89122 Reggio Calabria, Italy
- Universidad
ECOTEC, Km. 13.5 Samborondón, Samborondón EC092302, Ecuador
| | - Alberto Roldan
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Mykola T. Kartel
- Chuiko
Institute of Surface Chemistry, National
Academy of Science of Ukraine, Kyiv 03164, Ukraine
| |
Collapse
|
4
|
Smallman HR, Brancaglion GA, Pastre JC, Browne DL. Continuous Flow Generation of Acylketene Intermediates via Nitrogen Extrusion. J Org Chem 2022; 87:12297-12305. [PMID: 36047721 PMCID: PMC9486939 DOI: 10.1021/acs.joc.2c01486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A flow chemistry
process for the generation and use of acylketene
precursors through extrusion of nitrogen gas is reported. Key to the
development of a suitable continuous protocol is the balance of reaction
concentration against pressure in the flow reactor. The resulting
process enables access to intercepted acylketene scaffolds using volatile
amine nucleophiles and has been demonstrated on the gram scale. Thermal
gravimetric analysis was used to guide the temperature set point of
the reactor coils for a variety of acyl ketene precursors. The simultaneous
generation and reaction of two reactive intermediates (both derived
from nitrogen extrusion) is demonstrated.
Collapse
Affiliation(s)
- Harry R Smallman
- School of Pharmacy, University College London, 29-39 Brunswick Square, Bloomsbury, London WC1N 1AX, U.K
| | - Guilherme A Brancaglion
- Institute of Chemistry, University of Campinas-UNICAMP, Rua Monteiro Lobato 270, Campinas, São Paulo 13083-970, Brazil
| | - Julio C Pastre
- Institute of Chemistry, University of Campinas-UNICAMP, Rua Monteiro Lobato 270, Campinas, São Paulo 13083-970, Brazil
| | - Duncan L Browne
- School of Pharmacy, University College London, 29-39 Brunswick Square, Bloomsbury, London WC1N 1AX, U.K
| |
Collapse
|
5
|
Donnelly K, Baumann M. Continuous Flow Technology as an Enabler for Innovative Transformations Exploiting Carbenes, Nitrenes, and Benzynes. J Org Chem 2022; 87:8279-8288. [PMID: 35700424 PMCID: PMC9251729 DOI: 10.1021/acs.joc.2c00963] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Miniaturization offered
by microreactors provides for superb reaction
control as well as excellent heat and mass transfer. By performing
chemical reactions in microreactors or tubular systems under continuous
flow conditions, increased safety can be harnessed which allows exploitation
of these technologies for the generation and immediate consumption
of high-energy intermediates. This Synopsis demonstrates the use of
flow technology to effectively exploit benzynes, carbenes, and nitrenes
in synthetic chemistry programs.
Collapse
Affiliation(s)
- Kian Donnelly
- School of Chemistry, Science Centre South, University College Dublin, D04 N2E2 Dublin, Ireland
| | - Marcus Baumann
- School of Chemistry, Science Centre South, University College Dublin, D04 N2E2 Dublin, Ireland
| |
Collapse
|