1
|
Liu Y, Huang S, Liu WQ, Ba F, Liu Y, Ling S, Li J. An In Vitro Hybrid Biocatalytic System Enabled by a Combination of Surface-Displayed, Purified, and Cell-Free Expressed Enzymes. ACS Synth Biol 2024; 13:1434-1441. [PMID: 38695987 DOI: 10.1021/acssynbio.4c00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Enzymatic cascades have become a green and sustainable approach for the synthesis of valuable chemicals and pharmaceuticals. Using sequential enzymes to construct a multienzyme complex is an effective way to enhance the overall performance of biosynthetic routes. Here we report the design of an efficient in vitro hybrid biocatalytic system by assembling three enzymes that can convert styrene to (S)-1-phenyl-1,2-ethanediol. Specifically, we prepared the three enzymes in different ways, which were cell surface-displayed, purified, and cell-free expressed. To assemble them, we fused two orthogonal peptide-protein pairs (i.e., SpyTag/SpyCatcher and SnoopTag/SnoopCatcher) to the three enzymes, allowing their spatial organization by covalent assembly. By doing this, we constructed a multienzyme complex, which could enhance the production of (S)-1-phenyl-1,2-ethanediol by 3 times compared to the free-floating enzyme system without assembly. After optimization of the reaction system, the final product yield reached 234.6 μM with a substrate conversion rate of 46.9% (based on 0.5 mM styrene). Taken together, our strategy integrates the merits of advanced biochemical engineering techniques, including cellular surface display, spatial enzyme organization, and cell-free expression, which offers a new solution for chemical biosynthesis by enzymatic cascade biotransformation. We, therefore, anticipate that our approach will hold great potential for designing and constructing highly efficient systems to synthesize chemicals of agricultural, industrial, and pharmaceutical significance.
Collapse
Affiliation(s)
- Ying Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shuhui Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wan-Qiu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fang Ba
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yifan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| |
Collapse
|
2
|
Onur H, Tülek A, Yildirim D, Aslan ES, Binay B. A new highly enantioselective stable epoxide hydrolase from Hypsibius dujardini: Expression in Pichia pastoris and immobilization in ZIF-8 for asymmetric hydrolysis of racemic styrene oxide. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
|
4
|
Li L, Chai F, Liang C, Wang Y, Zhang X, Yang K, Xiao B. Comparison and application of biofilter and suspended bioreactor in removing gaseous o-xylene. ENVIRONMENTAL RESEARCH 2020; 188:109853. [PMID: 32846642 DOI: 10.1016/j.envres.2020.109853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/26/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Two bioreactors, suspended-growth bioreactors (SPB) and biofilter (BF), were compared for the performances in removing gaseous o-xylene. Their efficiencies were investigated by varying the o-xylene loadings, gas flow rates, and gas-water ratios. High-throughput techniques were applied for the microbial populations assay. The conversion rate of carbon in o-xylene was calculated, and the relationship between biomass and removal efficiencies was also analyzed. Results indicated that both the SPB and BF could effectively treat gases containing o-xylene. The average removal efficiencies were 91.8% and 93.5%, respectively. The elimination capacity of the BF was much higher than that of the SPB when the intake load was below 150 g m-3 h-1. When the o-xylene loadings were over 150 g m-3 h-1, both the SPB and BF achieved similar o-xylene removal rates. The maximum elimination capacities were 28.36 g m-3 h-1 for the SPB and 30.67 g m-3 h-1 for BF. The SPB was more sensitive to the changes in the gas flow rate. Results of microbial assay indicated that bacteria e.g. Mycobacterium sp. and Rhodanobacter sp. might play important roles in removing o-xylene in the SPB, while the bacteria Pseudomonas sp., Sphingomonas sp., and Defluviicoccus sp., and the fungi Aspergillus sp. and Scedosporium sp., were the o-xylene degraders in the BF. The successful application of the integrated bioreactor in treating gases containing o-xylene exhausted from the electroplating plant indicated that the integration of SPB and BF could be an effective method for removing VOCs with Henry coefficient in the range of 0.01-1.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Fengguang Chai
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Cunzhen Liang
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Ying Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xiao Zhang
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Kaixiong Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Benyi Xiao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
5
|
Li FL, Kong XD, Chen Q, Zheng YC, Xu Q, Chen FF, Fan LQ, Lin GQ, Zhou J, Yu HL, Xu JH. Regioselectivity Engineering of Epoxide Hydrolase: Near-Perfect Enantioconvergence through a Single Site Mutation. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02622] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Fu-Long Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Xu-Dong Kong
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
- Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qi Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Yu-Cong Zheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Qin Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fei-Fei Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Li-Qiang Fan
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Guo-Qiang Lin
- Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiahai Zhou
- Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
6
|
Zeng S, Liu J, Anankanbil S, Chen M, Guo Z, Adams JP, Snajdrova R, Li Z. Amide Synthesis via Aminolysis of Ester or Acid with an Intracellular Lipase. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02713] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shichao Zeng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Ji Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Sampson Anankanbil
- Department of Engineering, Faculty of Science and Technology, Aarhus University, 8000 Aarhus, Denmark
| | - Ming Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Zheng Guo
- Department of Engineering, Faculty of Science and Technology, Aarhus University, 8000 Aarhus, Denmark
| | - Joseph P. Adams
- Chemical Sciences, GSK R&D Medicines Research Centre, Gunnelswood Road, Stevenage, SG1 2NY, United Kingdom
| | - Radka Snajdrova
- Chemical Sciences, GSK R&D Medicines Research Centre, Gunnelswood Road, Stevenage, SG1 2NY, United Kingdom
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
7
|
Production of (R)-styrene oxide by recombinant whole-cell biocatalyst in aqueous and biphasic system. POLISH JOURNAL OF CHEMICAL TECHNOLOGY 2018. [DOI: 10.2478/pjct-2018-0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The enantioselective resolution of racemic styrene oxide (rac-SO) to (R)-SO by whole cells of a recombinant Escherichia coli expressing epoxide hydrolase (EH) activity in aqueous and biphasic system were studied. Some parameters that may alter this bio-resolution, such as the concentration of recombinant cell, substrate and product were evaluated. The effect of the addition of different additives on the course of rac-SO biotransformation was also investigated. The results showed that the yield and the enantiomeric excess (ee) of (R)-SO were dependent on these variables. When the kinetic resolution was conducted with 350 mM of rac-SO, enantiopure (R)-SO with high (≥99%) ee was obtained with a yield of 38.2% yield at 12.2 h in the presence of 10% (v/v) Tween 80. An isooctane/aqueous system was developed to overcome the adverse factors in the aqueous phase, resulting in an improvement of yield from 38.2% to 42.9%. The results will provide a useful guidance for further application of this enzyme in the biocatalytic production of chiral synthons.
Collapse
|
8
|
Zhang Y, He L, Shi L. Chiral Ion-Pair Organocatalyst-Promoted Efficient Enantio-selective Reduction of α-Hydroxy Ketones. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yiliang Zhang
- Shenzhen Graduate School; Harbin Institute of Technology; Shenzhen 518055 People's Republic of China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 People's Republic of China
| | - Li He
- Shenzhen Graduate School; Harbin Institute of Technology; Shenzhen 518055 People's Republic of China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 People's Republic of China
| | - Lei Shi
- Shenzhen Graduate School; Harbin Institute of Technology; Shenzhen 518055 People's Republic of China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 People's Republic of China
| |
Collapse
|
9
|
Enhancing productivity for cascade biotransformation of styrene to (S)-vicinal diol with biphasic system in hollow fiber membrane bioreactor. Appl Microbiol Biotechnol 2016; 101:1857-1868. [DOI: 10.1007/s00253-016-7954-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/17/2016] [Accepted: 10/21/2016] [Indexed: 11/27/2022]
|
10
|
Hu D, Wang R, Shi XL, Ye HH, Wu Q, Wu MC, Chu JJ. Kinetic resolution of racemic styrene oxide at a high concentration by recombinant Aspergillus usamii epoxide hydrolase in an n -hexanol/buffer biphasic system. J Biotechnol 2016; 236:152-8. [DOI: 10.1016/j.jbiotec.2016.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 01/28/2023]
|
11
|
Huang R, Wu M, Goldman MJ, Li Z. Encapsulation of enzyme via one-step template-free formation of stable organic-inorganic capsules: A simple and efficient method for immobilizing enzyme with high activity and recyclability. Biotechnol Bioeng 2015; 112:1092-101. [DOI: 10.1002/bit.25536] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/09/2014] [Accepted: 12/23/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Renliang Huang
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Mengyun Wu
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Mark J. Goldman
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
12
|
Zhang J, Wu S, Wu J, Li Z. Enantioselective Cascade Biocatalysis via Epoxide Hydrolysis and Alcohol Oxidation: One-Pot Synthesis of (R)-α-Hydroxy Ketones from Meso- or Racemic Epoxides. ACS Catal 2014. [DOI: 10.1021/cs5016113] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jiandong Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| | - Shuke Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| | - Jinchuan Wu
- Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore 627833
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| |
Collapse
|
13
|
Wu S, Chen Y, Xu Y, Li A, Xu Q, Glieder A, Li Z. Enantioselective trans-Dihydroxylation of Aryl Olefins by Cascade Biocatalysis with Recombinant Escherichia coli Coexpressing Monooxygenase and Epoxide Hydrolase. ACS Catal 2014. [DOI: 10.1021/cs400992z] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Shuke Wu
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
- Singapore-MIT
Alliance, National University of Singapore, 4 Engineering Drive 3, Singapore 117583
| | - Yongzheng Chen
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| | - Yi Xu
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| | - Aitao Li
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| | - Qisong Xu
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| | - Anton Glieder
- Institute of Molecular
Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Zhi Li
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
- Singapore-MIT
Alliance, National University of Singapore, 4 Engineering Drive 3, Singapore 117583
| |
Collapse
|
14
|
Toribatake K, Nishiyama H. Asymmetric Diboration of Terminal Alkenes with a Rhodium Catalyst and Subsequent Oxidation: Enantioselective Synthesis of Optically Active 1,2-Diols. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201305181] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Toribatake K, Nishiyama H. Asymmetric diboration of terminal alkenes with a rhodium catalyst and subsequent oxidation: enantioselective synthesis of optically active 1,2-diols. Angew Chem Int Ed Engl 2013; 52:11011-5. [PMID: 24000239 DOI: 10.1002/anie.201305181] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/23/2013] [Indexed: 11/07/2022]
Abstract
Pin it down: A highly enantioselective diboration of terminal alkenes with chiral 1 and bis(pinacolato)diboron (B2 pin2 ) was realized. Subsequent oxidation of the diboron adducts with sodium peroxoborate readily gave the corresponding optically active 1,2-diols in high yields and high enantioselectivities.
Collapse
Affiliation(s)
- Kenji Toribatake
- Department of Applied Chemistry, Graduated School of Engineering, Nagoya University, Chikusa, Nagoya, 464-8603 (Japan) http://www.apchem.nagoya-u.ac.jp/06-II-1/nisilab/index.html
| | | |
Collapse
|
16
|
Yildirim D, Tükel SS, Alptekin Ö, Alagöz D. Immobilized Aspergillus niger epoxide hydrolases: Cost-effective biocatalysts for the prepation of enantiopure styrene oxide, propylene oxide and epichlorohydrin. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2012.11.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Li Z, Liu W, Chen X, Jia S, Wu Q, Zhu D, Ma Y. Highly enantioselective double reduction of phenylglyoxal to ( R )-1-phenyl-1,2-ethanediol by one NADPH-dependent yeast carbonyl reductase with a broad substrate profile. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.02.085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Wu S, Li A, Chin YS, Li Z. Enantioselective Hydrolysis of Racemic and Meso-Epoxides with Recombinant Escherichia coli Expressing Epoxide Hydrolase from Sphingomonas sp. HXN-200: Preparation of Epoxides and Vicinal Diols in High ee and High Concentration. ACS Catal 2013. [DOI: 10.1021/cs300804v] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Shuke Wu
- Department
of Chemical and Biomolecular
Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576
- Singapore-MIT Alliance, National University of Singapore, 4 Engineering Drive
3, Singapore 117576
| | - Aitao Li
- Department
of Chemical and Biomolecular
Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576
| | - Yit Siang Chin
- Department
of Chemical and Biomolecular
Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576
| | - Zhi Li
- Department
of Chemical and Biomolecular
Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576
- Singapore-MIT Alliance, National University of Singapore, 4 Engineering Drive
3, Singapore 117576
| |
Collapse
|
19
|
Tischler D, Kaschabek SR. Microbial Styrene Degradation: From Basics to Biotechnology. ENVIRONMENTAL SCIENCE AND ENGINEERING 2012. [DOI: 10.1007/978-3-642-23789-8_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
20
|
Lin H, Liu JY, Wang HB, Ahmed AAQ, Wu ZL. Biocatalysis as an alternative for the production of chiral epoxides: A comparative review. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.molcatb.2011.07.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Toda H, Itoh N. Isolation and characterization of styrene metabolism genes from styrene-assimilating soil bacteria Rhodococcus sp. ST-5 and ST-10. J Biosci Bioeng 2011; 113:12-9. [PMID: 21996027 DOI: 10.1016/j.jbiosc.2011.08.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/15/2011] [Accepted: 08/31/2011] [Indexed: 11/12/2022]
Abstract
Styrene metabolism genes were isolated from styrene-assimilating bacteria Rhodococcus sp. ST-5 and ST-10. Strain ST-5 had a gene cluster containing four open reading frames which encoded styrene degradation enzymes. The genes showed high similarity to styABCD of Pseudomonas sp. Y2. On the other hand, strain ST-10 had only two genes which encoded styrene monooxygenase and flavin oxidoreductase (styAB). Escherichia coli transformants possessing the sty genes of strains ST-5 and ST-10 produced (S)-styrene oxide from styrene, indicating that these genes function as styrene degradation enzymes. Metabolite analysis by resting-cell reaction with gas chromatography-mass spectrometry revealed that strain ST-5 converts styrene to phenylacetaldehyde via styrene oxide by styrene oxide isomerase (styC) reaction. On the other hand, strain ST-10 lacked this enzyme, and thus accumulated styrene oxide as an intermediate. HPLC analysis showed that styrene oxide was spontaneously isomerized to phenylacetaldehyde by chemical reaction. The produced phenylacetaldehyde was converted to phenylacetic acid (PAA) in strain ST-10 as well as in strain ST-5. Furthermore, phenylacetic acid was converted to phenylacetyl-CoA by the catalysis of phenylacetate-CoA ligase in strains ST-5 and ST-10. This study proposes possible styrene metabolism pathways in Rhodococcus sp. strains ST-5 and ST-10.
Collapse
Affiliation(s)
- Hiroshi Toda
- Department of Biotechnology, Faculty of Engineering, Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | | |
Collapse
|
22
|
Jia X, Xu Y, Li Z. Regio- and Stereoselective Concurrent Oxidations with Whole Cell Biocatalyst: Simple and Green Syntheses of Enantiopure 1,2-Diols via Oxidative Kinetic Resolution. ACS Catal 2011. [DOI: 10.1021/cs200099k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Xin Jia
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576
| | - Yi Xu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576
| |
Collapse
|
23
|
Bala N, Chimni SS. Recent developments in the asymmetric hydrolytic ring opening of epoxides catalysed by microbial epoxide hydrolase. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.tetasy.2010.11.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Bala N, Chimni SS, Saini HS, Chadha BS. Bacillus alcalophilus MTCC10234 catalyzed enantioselective kinetic resolution of aryl glycidyl ethers. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2009.12.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Li N, Zhang Y, Feng H. Biochemical characterization and transcriptional analysis of the epoxide hydrolase from white-rot fungus Phanerochaete chrysosporium. Acta Biochim Biophys Sin (Shanghai) 2009; 41:638-47. [PMID: 19657565 DOI: 10.1093/abbs/gmp052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The white-rot basidiomycetes Phanerochaete chrysosporium is a model fungus used to investigate the secondary metabolism and lignin degradation. Genomic sequencing reveals the presence of at least 18 genes encoding putative epoxide hydrolases (EHs). One cDNA encoding EH (designated as PchEHA) was cloned and expressed in Escherichia coli. Transcriptional analysis demonstrated that the transcripts of PchEHA could be detected under the ligninolytic and nonligninolytic conditions as well as amended with anthracene. The recombinant enzyme exhibits broad hydrolytic activity toward several racemic epoxides including styrene oxide, epichlorohydrin, and 1,2-epoxybutane, but with different specificity. Using racemic styrene oxide as the substrate, the optimal pH and temperature are pH 9.0 and 40 degrees C, respectively. The enzyme is not sensitive to EDTA, and is inhibited by H2O2, and several metal ions including Zn(2+), Cd(2+), and Hg(2+) at various extents. Several organic cosolvents including acetone, dimethylsulfoxide, formamide, glycerol and ethanol at 10% (v/v) cause slight or no inhibition of the hydrolytic reaction. More importantly, the recombinant enzyme displays distinct enantioselective preference to several chiral epoxides. The enzyme showed good enantioselectivity toward chiral styrene oxide with preferential hydrolysis of (R)-enantiomer. PchEHA is likely a novel soluble EH based on the sequence analysis and catalytic properties, and is a great potential biocatalyst for the preparation of enantiopure styrene oxide in racemic kinetic resolution.
Collapse
Affiliation(s)
- Nian Li
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, China
| | | | | |
Collapse
|
26
|
Biotechnological production of enantiopure epoxides by enzymatic kinetic resolution. Appl Microbiol Biotechnol 2009; 84:239-47. [DOI: 10.1007/s00253-009-2110-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/24/2009] [Accepted: 06/24/2009] [Indexed: 10/20/2022]
|
27
|
Kotik M, Štěpánek V, Marešová H, Kyslík P, Archelas A. Environmental DNA as a source of a novel epoxide hydrolase reacting with aliphatic terminal epoxides. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcatb.2008.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Xu Y, Jia X, Panke S, Li Z. Asymmetric dihydroxylation of aryl olefins by sequential enantioselective epoxidation and regioselective hydrolysis with tandem biocatalysts. Chem Commun (Camb) 2009:1481-3. [DOI: 10.1039/b820889a] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Jia X, Wang Z, Li Z. Preparation of (S)-2-, 3-, and 4-chlorostyrene oxides with the epoxide hydrolase from Sphingomonas sp. HXN-200. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.tetasy.2007.12.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Lee SJ, Kim HS, Kim SJ, Park S, Kim BJ, Shuler ML, Lee EY. Cloning, expression and enantioselective hydrolytic catalysis of a microsomal epoxide hydrolase from a marine fish, Mugil cephalus. Biotechnol Lett 2006; 29:237-46. [PMID: 17151961 DOI: 10.1007/s10529-006-9222-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 09/27/2006] [Accepted: 09/29/2006] [Indexed: 11/25/2022]
Abstract
The cDNA of a marine fish microsomal epoxide hydrolase (mEH) gene from Mugil cephalus was cloned by rapid amplification of cDNA ends (RACE) techniques. The homology model for the mEH of M. cephalus showed a characteristic structure of alpha/beta-hydrolase-fold main domain with a lid domain over the active site. The characteristic catalytic triad, consisting of Asp(238), His(444), and Glu(417), was highly conserved. The cloned mEH gene was expressed in Escherichia coli and the recombinant mEH exhibited (R)-preferred hydrolysis activity toward racemic styrene oxide. We obtained enantiopure (S)-styrene oxide with a high enantiopurity of more than 99% enantiomeric excess and yield of 15.4% by batch kinetic resolution of 20 mM racemic styrene oxide.
Collapse
Affiliation(s)
- Soo Jung Lee
- Department of Food Science and Biotechnology, Kyungsung University, Busan, Korea
| | | | | | | | | | | | | |
Collapse
|