1
|
Röllig R, Paul CE, Duquesne K, Kara S, Alphand V. Exploring the Temperature Effect on Enantioselectivity of a Baeyer-Villiger Biooxidation by the 2,5-DKCMO Module: The SLM Approach. Chembiochem 2022; 23:e202200293. [PMID: 35648642 PMCID: PMC9400988 DOI: 10.1002/cbic.202200293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 11/08/2022]
Abstract
Temperature is a crucial parameter for biological and chemical processes. Its effect on enzymatically catalysed reactions has been known for decades, and stereo- and enantiopreference are often temperature-dependent. For the first time, we present the temperature effect on the Baeyer-Villiger oxidation of rac-bicyclo[3.2.0]hept-2-en-6-one by the type II Bayer-Villiger monooxygenase, 2,5-DKCMO. In the absence of a reductase and driven by the hydride-donation of a synthetic nicotinamide analogue, the clear trend for a decreasing enantioselectivity at higher temperatures was observed. "Traditional" approaches such as the determination of the enantiomeric ratio (E) appeared unsuitable due to the complexity of the system. To quantify the trend, we chose to use the 'Shape Language Modelling' (SLM), a tool that allows the reaction to be described at all points in a shape prescriptive manner. Thus, without knowing the equation of the reaction, the substrate ee can be estimated that at any conversion.
Collapse
Affiliation(s)
- Robert Röllig
- Aix-Marseille UnivCNRSCentrale MarseilleiSm2 UMR CMRS 7313Aix-Marseille UniversitéPôle de l'Etoile Avenue Escadrille Normandie Niemen13397MarseilleFrance
- Biocatalysis and Bioprocessing GroupDepartment of Biological and Chemical EngineeringAarhus UniversityGustav Wieds Vej 10Aarhus8000 Aarhus CDenmark
| | - Caroline E. Paul
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 9Delft2629 HZThe Netherlands
| | - Katia Duquesne
- Aix-Marseille UnivCNRSCentrale MarseilleiSm2 UMR CMRS 7313Aix-Marseille UniversitéPôle de l'Etoile Avenue Escadrille Normandie Niemen13397MarseilleFrance
| | - Selin Kara
- Biocatalysis and Bioprocessing GroupDepartment of Biological and Chemical EngineeringAarhus UniversityGustav Wieds Vej 10Aarhus8000 Aarhus CDenmark
| | - Véronique Alphand
- Aix-Marseille UnivCNRSCentrale MarseilleiSm2 UMR CMRS 7313Aix-Marseille UniversitéPôle de l'Etoile Avenue Escadrille Normandie Niemen13397MarseilleFrance
| |
Collapse
|
2
|
Hu D, Zong XC, Xue F, Li C, Hu BC, Wu MC. Manipulating regioselectivity of an epoxide hydrolase for single enzymatic synthesis of (R)-1,2-diols from racemic epoxides. Chem Commun (Camb) 2020; 56:2799-2802. [DOI: 10.1039/d0cc00283f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Both the activity and regioselectivity of Phaseolus vulgaris epoxide hydrolase were remarkably improved via reshaping two substrate tunnels based on rational design.
Collapse
Affiliation(s)
- Die Hu
- Wuxi School of Medicine, Jiangnan University
- Wuxi
- China
| | - Xun-Cheng Zong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| | - Feng Xue
- School of Marine and Bioengineering
- Yancheng Institute of Technology
- Yancheng 224051
- China
| | - Chuang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| | - Bo-Chun Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| | - Min-Chen Wu
- Wuxi School of Medicine, Jiangnan University
- Wuxi
- China
| |
Collapse
|
3
|
Busch H, Hagedoorn PL, Hanefeld U. Rhodococcus as A Versatile Biocatalyst in Organic Synthesis. Int J Mol Sci 2019; 20:E4787. [PMID: 31561555 PMCID: PMC6801914 DOI: 10.3390/ijms20194787] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
The application of purified enzymes as well as whole-cell biocatalysts in synthetic organic chemistry is becoming more and more popular, and both academia and industry are keen on finding and developing novel enzymes capable of performing otherwise impossible or challenging reactions. The diverse genus Rhodococcus offers a multitude of promising enzymes, which therefore makes it one of the key bacterial hosts in many areas of research. This review focused on the broad utilization potential of the genus Rhodococcus in organic chemistry, thereby particularly highlighting the specific enzyme classes exploited and the reactions they catalyze. Additionally, close attention was paid to the substrate scope that each enzyme class covers. Overall, a comprehensive overview of the applicability of the genus Rhodococcus is provided, which puts this versatile microorganism in the spotlight of further research.
Collapse
Affiliation(s)
- Hanna Busch
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Ulf Hanefeld
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
4
|
Musa MM, Hollmann F, Mutti FG. Synthesis of enantiomerically pure alcohols and amines via biocatalytic deracemisation methods. Catal Sci Technol 2019; 9:5487-5503. [PMID: 33628427 PMCID: PMC7116805 DOI: 10.1039/c9cy01539f] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Deracemisation via chemo-enzymatic or multi-enzymatic approaches is the optimum substitute for kinetic resolution, which suffers from the limitation of a theoretical maximum 50% yield albeit high enantiomeric excess is attainable. This review covers the recent progress in various deracemisation approaches applied to the synthesis of enantiomerically pure alcohols and amines, such as (1) dynamic kinetic resolution, (2) cyclic deracemisation, (3) linear deracemisation (including stereoinversion) and (4) enantioconvergent methods.
Collapse
Affiliation(s)
- Musa M Musa
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Kingdom of Saudi Arabia
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZDelft, The Netherlands
| | - Francesco G Mutti
- Van't HoffInstitute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Peng F, Zhao Y, Li FZ, Zong MH, Lou WY. The effect of deep eutectic solvents on the asymmetric hydrolysis of styrene oxide by mung bean epoxide hydrolases. BIORESOUR BIOPROCESS 2018. [DOI: 10.1186/s40643-018-0191-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
6
|
Saini P, Sareen D. An Overview on the Enhancement of Enantioselectivity and Stability of Microbial Epoxide Hydrolases. Mol Biotechnol 2017; 59:98-116. [PMID: 28271340 DOI: 10.1007/s12033-017-9996-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Epoxide hydrolases (EHs; 3.3.2.x) catalyze the enantioselective ring opening of racemic epoxides to the corresponding enantiopure vicinal diols and remaining equivalent unreacted epoxides. These epoxides and diols are used for the synthesis of chiral drug intermediates. With an upsurge in the methods for identification of novel microbial EHs, a lot of EHs have been discovered and utilized for kinetic resolution of racemic epoxides. However, there is still a constraint on the account of limited EHs being successfully applied on the preparative scale for industrial biotransformations. This limitation has to be overcome before application of identified functional EHs on large scale. Many strategies such as optimizing reaction media, immobilizing EHs and laboratory-scale directed evolution of EHs have been adopted for enhancing the industrial potential of EHs. In this review, these approaches have been highlighted which can serve as a pathway for the enrichment of already identified EHs for their application on an industrial scale in future studies.
Collapse
Affiliation(s)
- Priya Saini
- Department of Biochemistry, Panjab University, Sector 25, BMS Block II, Chandigarh, 160014, India
| | - Dipti Sareen
- Department of Biochemistry, Panjab University, Sector 25, BMS Block II, Chandigarh, 160014, India.
| |
Collapse
|
7
|
Parve O, Reile I, Parve J, Kasvandik S, Kudrjašova M, Tamp S, Metsala A, Villo L, Pehk T, Jarvet J, Vares L. An NMR and MD Modeling Insight into Nucleation of 1,2-Alkanediols: Selective Crystallization of Lipase-Catalytically Resolved Enantiomers from the Reaction Mixtures. J Org Chem 2013; 78:12795-801. [DOI: 10.1021/jo402189e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Omar Parve
- Department
of Chemistry, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Indrek Reile
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Jaan Parve
- Institute
of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Sergo Kasvandik
- Institute
of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Marina Kudrjašova
- Department
of Chemistry, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Sven Tamp
- Department
of Chemistry, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Andrus Metsala
- Department
of Chemistry, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Ly Villo
- Department
of Chemistry, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Tõnis Pehk
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Jüri Jarvet
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Lauri Vares
- Institute
of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| |
Collapse
|
8
|
Schober M, Faber K. Inverting hydrolases and their use in enantioconvergent biotransformations. Trends Biotechnol 2013; 31:468-78. [PMID: 23809848 PMCID: PMC3725421 DOI: 10.1016/j.tibtech.2013.05.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/14/2013] [Accepted: 05/14/2013] [Indexed: 01/23/2023]
Abstract
Enantioconvergent processes overcome the 50%-yield limits of kinetic resolution. Inverting enzymes are key catalysts for enantioconvergent processes. Enzyme engineering provided improved variants of inverting enzymes.
Owing to the more abundant occurrence of racemic compounds compared to prochiral or meso forms, most enantiomerically pure products are obtained via racemate resolution. This review summarizes (chemo)enzymatic enantioconvergent processes based on the use of hydrolytic enzymes, which are able to invert a stereocenter during catalysis that can overcome the 50%-yield limitation of kinetic resolution. Recent developments are presented in the fields of inverting or retaining sulfatases, epoxide hydrolases and dehalogenases, which allow the production of secondary alcohols or vicinal diols at a 100% theoretical yield from a racemate via enantioconvergent processes.
Collapse
Affiliation(s)
- Markus Schober
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | | |
Collapse
|
9
|
Naghi MA, Bencze LC, Brem J, Paizs C, Irimie FD, Toşa MI. Sequential enzymatic procedure for the preparation of enantiomerically pure 2-heteroaryl-2-hydroxyacetic acids. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.tetasy.2012.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Bala N, Kaur K, Chimni SS, Saini HS, Kanwar SS. Bioresolution of benzyl glycidyl ether using whole cells of Bacillus alcalophilus. J Basic Microbiol 2011; 52:383-9. [PMID: 22052437 DOI: 10.1002/jobm.201100204] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/25/2011] [Indexed: 11/11/2022]
Abstract
The incubation of whole Bacillus alcalophilus cells grown on a mineral supplemented medium (MSM) containing 1% (w/v) sucrose as carbon source, 1.2% (w/v) tryptone as nitrogen source at pH 6.5 and temperature 30 °C in 24 h kinetically resolved benzyl glycidyl ether (1 mg/ml) to provide (S)-benzyl glycidyl ether with 30% ee and (R)-3-benzyloxypropane-1,2-diol with 40% ee.
Collapse
Affiliation(s)
- Neeraj Bala
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| | | | | | | | | |
Collapse
|
11
|
Zhao J, Chu YY, Li AT, Ju X, Kong XD, Pan J, Tang Y, Xu JH. An Unusual (R)-Selective Epoxide Hydrolase with High Activity for Facile Preparation of Enantiopure Glycidyl Ethers. Adv Synth Catal 2011. [DOI: 10.1002/adsc.201100031] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Martins MP, Mouad AM, Boschini L, Regali Seleghim MH, Sette LD, Meleiro Porto AL. Marine fungi Aspergillus sydowii and Trichoderma sp. catalyze the hydrolysis of benzyl glycidyl ether. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:314-320. [PMID: 20549284 DOI: 10.1007/s10126-010-9302-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 05/18/2010] [Indexed: 05/29/2023]
Abstract
Whole cells of the marine fungi Aspergillus sydowii Gc12, Penicillium raistrickii Ce16, P. miczynskii Gc5, and Trichoderma sp. Gc1, isolated from marine sponges of the South Atlantic Ocean (Brazil), have been screened for the enzymatic resolution of (±)-2-(benzyloxymethyl)oxirane (benzyl glycidyl ether; 1). Whole cells of A. sydowii Gc12 catalyzed the enzymatic hydrolysis of (R,S)-1 to yield (R)-1 with an enantiomeric excess (ee) of 24-46% and 3-(benzyloxy)propane-1,2-diol (2) with ee values <10%. In contrast, whole cells of Trichoderma sp. Gc1 afforded (S)-1 with ee values up to 60% and yields up to 39%, together with (R)-2 in 25% yield and an ee of 32%. This is the first published example of the hydrolysis of 1 by whole cells of marine fungi isolated from the South Atlantic Ocean. The hydrolases from the two studied fungi exhibited complementary regioselectivity in opening the epoxide ring of racemic 1, with those of A. sydowii Gc12 showing an (S) preference and those of Trichoderma sp. Gc1 presenting an (R) preference for the substrate.
Collapse
Affiliation(s)
- Mariana Provedel Martins
- Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador, São-carlense, 400, CEP 13560-970 CP 780, São Carlos, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
13
|
Bala N, Chimni SS. Recent developments in the asymmetric hydrolytic ring opening of epoxides catalysed by microbial epoxide hydrolase. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.tetasy.2010.11.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Bencze LC, Paizs C, Toşa MI, Irimie FD, Rétey J. Chemoenzymatic One-Pot Synthesis of both (R)- and (S)-Aryl-1,2-ethanediols. ChemCatChem 2010. [DOI: 10.1002/cctc.201000295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
15
|
Lindberg D, de la Fuente Revenga M, Widersten M. Temperature and pH dependence of enzyme-catalyzed hydrolysis of trans-methylstyrene oxide. A unifying kinetic model for observed hysteresis, cooperativity, and regioselectivity. Biochemistry 2010; 49:2297-304. [PMID: 20146441 DOI: 10.1021/bi902157b] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The underlying enzyme kinetics behind the regioselective promiscuity shown by epoxide hydrolases toward certain epoxides has been studied. The effects of temperature and pH on regioselectivity were investigated by analyzing the stereochemistry of hydrolysis products of (1R,2R)-trans-2-methylstyrene oxide between 14-46 degrees C and pH 6.0-9.0, either catalyzed by the potato epoxide hydrolase StEH1 or in the absence of enzyme. In the enzyme-catalyzed reaction, a switch of preferred epoxide carbon that is subjected to nucleophilic attack is observed at pH values above 8. The enzyme also displays cooperativity in substrate saturation plots when assayed at temperatures < or = 30 degrees C and at intermediate pH. The cooperativity is lost at higher assay temperatures. Cooperativity can originate from a kinetic mechanism involving hysteresis and will be dependent on the relationship between k(cat) and the rate of interconversion between two different Michaelis complexes. In the case of the studied reactions, the proposed different Michaelis complexes are enzyme-substrate complexes in which the epoxide substrate is bound in different binding modes, allowing for separate pathways toward product formation. The assumption of separated, but interacting, reaction pathways is supported by that formation of the two product enantiomers also displays distinct pH dependencies of k(cat)/K(M). The thermodynamic parameters describing the differences in activation enthalpy and entropy suggest that (1) regioselectivity is primarily dictated by differences in activation entropy with positive values of both DeltaDeltaH(++) and DeltaDeltaS(++) and (2) the hysteretic behavior is linked to an interconversion between Michaelis complexes with rates increasing with temperature. From the collected data, we propose that hysteresis, regioselectivity, and, when applicable, hysteretic cooperativity are closely linked properties, explained by the kinetic mechanism earlier introduced by our group.
Collapse
Affiliation(s)
- Diana Lindberg
- Department of Biochemistry and Organic Chemistry, Uppsala University, BMC, Box 576, SE-751 23 Uppsala, Sweden
| | | | | |
Collapse
|
16
|
Bencze LC, Paizs C, Toşa MI, Vass E, Irimie FD. Synthesis of enantiomerically enriched (R)- and (S)-benzofuranyl- and benzo[b]thiophenyl-1,2-ethanediols via enantiopure cyanohydrins as intermediates. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.tetasy.2010.01.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Fuchs M, Koszelewski D, Tauber K, Kroutil W, Faber K. Chemoenzymatic asymmetric total synthesis of (S)-Rivastigmine using ω-transaminases. Chem Commun (Camb) 2010; 46:5500-2. [DOI: 10.1039/c0cc00585a] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Biotechnological production of enantiopure epoxides by enzymatic kinetic resolution. Appl Microbiol Biotechnol 2009; 84:239-47. [DOI: 10.1007/s00253-009-2110-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/24/2009] [Accepted: 06/24/2009] [Indexed: 10/20/2022]
|
19
|
Fuchs M, Simeo Y, Ueberbacher BT, Mautner B, Netscher T, Faber K. Enantiocomplementary Chemoenzymatic Asymmetric Synthesis of (R)- and (S)-Chromanemethanol. European J Org Chem 2009. [DOI: 10.1002/ejoc.200800950] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Bisogno FR, Orden AA, Pranzoni CA, Cifuente DA, Giordano OS, Kurina Sanz M. Atypical regioselective biohydrolysis on steroidal oxiranes by Aspergillus niger whole cells: some stereochemical features. Steroids 2007; 72:643-52. [PMID: 17572462 DOI: 10.1016/j.steroids.2007.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 04/20/2007] [Accepted: 04/26/2007] [Indexed: 11/30/2022]
Abstract
5,6-Epoxycholestan-3beta-ol derivatives were hydrolyzed in a diastereoconvergent manner by growing and resting cells of several strains of Aspergillus niger, particularly A. niger ATCC 11394. These strains displayed opposite regioselectivity toward each isomer in an alpha and beta epoxide mixture, thus, the nucleophilic attack took place at the less substituted and the most substituted carbon atom on each diasteromer, respectively. These biocatalysts opened trisubstituted oxiranes but were unable to hydrolyze the disubstituted oxiranes in the tested sterol derivatives. These findings suggest that A. niger strains possess another hydrolytic ability different from the commercial A. niger epoxide hydrolase (EH) that did not accept this kind of steroidal oxiranes as substrates.
Collapse
Affiliation(s)
- Fabricio R Bisogno
- INTEQUI-CONICET, Area de Química Orgánica, Facultad de Química, Bioquímica y Farmacia, UNSL, Chacabuco y Pedernera, 5700 San Luis, Argentina
| | | | | | | | | | | |
Collapse
|
21
|
Deregnaucourt J, Archelas A, Barbirato F, Paris JM, Furstoss R. Enzymatic Transformations 63. High-Concentration Two Liquid-Liquid PhaseAspergillus niger Epoxide Hydrolase-Catalysed Resolution: Application to Trifluoromethyl-Substituted Aromatic Epoxides. Adv Synth Catal 2007. [DOI: 10.1002/adsc.200700085] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Bottalla AL, Ibrahim-Ouali M, Santelli M, Furstoss R, Archelas A. Epoxide Hydrolase-Catalysed Kinetic Resolution of a Spiroepoxide, a Key Building Block of Various 11-Heterosteroids. Adv Synth Catal 2007. [DOI: 10.1002/adsc.200600535] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Bacillus subtilis epoxide hydrolase-catalyzed preparation of enantiopure 2-methylpropane-1,2,3-triol monobenzyl ether and its application to expeditious synthesis of (R)-bicalutamide. Tetrahedron Lett 2007. [DOI: 10.1016/j.tetlet.2006.12.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|