1
|
Ferreira JCC, Gonçalves MST, Preto A, Sousa MJ. Anticancer Activity of Benzo[ a]phenoxazine Compounds Promoting Lysosomal Dysfunction. Cells 2024; 13:1385. [PMID: 39195273 PMCID: PMC11352945 DOI: 10.3390/cells13161385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Specific cancer therapy remains a problem to be solved. Breast and colorectal cancer are among the cancers with the highest prevalence and mortality rates. Although there are some therapeutic options, there are still few effective agents for those cancers, which constitutes a clinical problem that requires further research efforts. Lysosomes play an important role in cancer cells' survival, and targeting lysosomes has gained increased interest. In recent years, our team has been synthetizing and testing novel benzo[a]phenoxazine derivatives, as they have been shown to possess potent pharmacological activities. Here, we investigated the anticancer activity of three of the most potent derivatives from our library, C9, A36, and A42, on colorectal- and breast-cancer-derived cell lines, and compared this with the effect on non-neoplastic cell lines. We observed that the three compounds were selective for the cancer cells, namely the RKO colorectal cancer cell line and the MCF7 breast cancer cell line. In both models, the compounds reduced cell proliferation, cell survival, and cell migration, accumulated on the lysosome, and induced cell death accompanied by lysosomal membrane permeabilization (LMP), increasing the intracellular pH and ROS accumulation. Our results demonstrated that these compounds specifically target lysosomes from cancer cells, making them promising candidates as LMP inducers for cancer therapy.
Collapse
Affiliation(s)
- João Carlos Canossa Ferreira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (A.P.); (M.J.S.)
- IBS-Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- Centre of Chemistry (CQUM), Department of Chemistry, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal;
| | - M. Sameiro T. Gonçalves
- Centre of Chemistry (CQUM), Department of Chemistry, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal;
| | - Ana Preto
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (A.P.); (M.J.S.)
- IBS-Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Maria João Sousa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (A.P.); (M.J.S.)
- IBS-Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
2
|
Ferreira JCC, Sousa RPCL, Preto A, Sousa MJ, Gonçalves MST. Novel Benzo[ a]phenoxazinium Chlorides Functionalized with Sulfonamide Groups as NIR Fluorescent Probes for Vacuole, Endoplasmic Reticulum, and Plasma Membrane Staining. Int J Mol Sci 2023; 24:3006. [PMID: 36769330 PMCID: PMC9918004 DOI: 10.3390/ijms24033006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
The demand for new fluorophores for different biological target imaging is increasing. Benzo[a]phenoxazine derivatives are fluorochromophores that show promising optical properties for bioimaging, namely fluorescent emission at the NIR of the visible region, where biological samples have minimal fluorescence emission. In this study, six new benzo[a]phenoxazinium chlorides possessing sulfonamide groups at 5-amino-positions were synthesized and their optical and biological properties were tested. Compared with previous probes evaluated using fluorescence microscopy, using different S. cerevisiae strains, these probes, with sulfonamide groups, stained the vacuole membrane and/or the perinuclear membrane of the endoplasmic reticulum with great specificity, with some fluorochromophores capable of even staining the plasma membrane. Thus, the addition of a sulfonamide group to the benzo[a]phenoxazinium core increases their specificity and attributes for the fluorescent labeling of cell applications and fractions, highlighting them as quite valid alternatives to commercially available dyes.
Collapse
Affiliation(s)
- João C. C. Ferreira
- Centre of Chemistry (CQUM), Department of Chemistry, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IBS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Rui P. C. L. Sousa
- Centre of Chemistry (CQUM), Department of Chemistry, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - A. Preto
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IBS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Maria João Sousa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IBS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - M. Sameiro T. Gonçalves
- Centre of Chemistry (CQUM), Department of Chemistry, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
3
|
Targeting Lysosomes in Colorectal Cancer: Exploring the Anticancer Activity of a New Benzo[ a]phenoxazine Derivative. Int J Mol Sci 2022; 24:ijms24010614. [PMID: 36614056 PMCID: PMC9820173 DOI: 10.3390/ijms24010614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Colorectal cancer (CRC) has been ranked as one of the cancer types with a higher incidence and one of the most mortal. There are limited therapies available for CRC, which urges the finding of intracellular targets and the discovery of new drugs for innovative therapeutic approaches. In addition to the limited number of effective anticancer agents approved for use in humans, CRC resistance and secondary effects stemming from classical chemotherapy remain a major clinical problem, reinforcing the need for the development of novel drugs. In the recent years, the phenoxazines derivatives, Nile Blue analogues, have been shown to possess anticancer activity, which has created interest in exploring the potential of these compounds as anticancer drugs. In this context, we have synthetized and evaluated the anticancer activity of different benzo[a]phenoxazine derivatives for CRC therapy. Our results revealed that one particular compound, BaP1, displayed promising anticancer activity against CRC cells. We found that BaP1 is selective for CRC cells and reduces cell proliferation, cell survival, and cell migration. We observed that the compound is associated with reactive oxygen species (ROS) generation, accumulates in the lysosomes, and leads to lysosomal membrane permeabilization, cytosolic acidification, and apoptotic cell death. In vivo results using a chicken embryo choriollantoic membrane (CAM) assay showed that BaP1 inhibits tumor growth, angiogenesis, and tumor proliferation. These observations highlight that BaP1 as a very interesting agent to disturb and counteract the important roles of lysosomes in cancer and suggests BaP1 as a promising candidate to be exploited as new anticancer lysosomal-targeted agent, which uses lysosome membrane permeabilization (LMP) as a therapeutic approach in CRC.
Collapse
|
4
|
Jenni S, Renault K, Dejouy G, Debieu S, Laly M, Romieu A. In Situ Synthesis of Phenoxazine Dyes in Water: Application for "Turn‐On" Fluorogenic and Chromogenic Detection of Nitric Oxide. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202100268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sébastien Jenni
- Burgundy Franche-Comté University: Universite Bourgogne Franche-Comte ICMUB - UMR CNRS 6302 FRANCE
| | - Kévin Renault
- Burgundy Franche-Comté University: Universite Bourgogne Franche-Comte ICMUB - UMR CNRS 6302 FRANCE
| | - Garance Dejouy
- Burgundy Franche-Comté University: Universite Bourgogne Franche-Comte ICMUB - UMR CNRS 6302 FRANCE
| | - Sylvain Debieu
- Burgundy Franche-Comté University: Universite Bourgogne Franche-Comte ICMUB - UMR CNRS 6302 FRANCE
| | - Myriam Laly
- Burgundy Franche-Comté University: Universite Bourgogne Franche-Comte ICMUB - UMR CNRS 6302 FRANCE
| | - Anthony Romieu
- University of Burgundy Franche-Comté ICMUB - UMR CNRS 6302 Faculté des Sciences Mirande9, avenue Alain SavaryBP 47870 21078 Dijon FRANCE
| |
Collapse
|
5
|
Ferreira JCC, Lopes C, Preto A, Gonçalves MST, Sousa MJ. Novel Nile Blue Analogue Stains Yeast Vacuolar Membrane, Endoplasmic Reticulum, and Lipid Droplets, Inducing Cell Death through Vacuole Membrane Permeabilization. J Fungi (Basel) 2021; 7:jof7110971. [PMID: 34829259 PMCID: PMC8623074 DOI: 10.3390/jof7110971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/13/2021] [Indexed: 12/05/2022] Open
Abstract
Phenoxazine derivatives such as Nile Blue analogues are assumed to be increasingly relevant in cell biology due to their fluorescence staining capabilities and antifungal and anticancer activities. However, the mechanisms underlying their effects remain poorly elucidated. Using S. cerevisiae as a eukaryotic model, we found that BaP1, a novel 5- and 9-N-substituted benzo[a]phenoxazine synthesized in our laboratory, when used in low concentrations, accumulates and stains the vacuolar membrane and the endoplasmic reticulum. In contrast, at higher concentrations, BaP1 stains lipid droplets and induces a regulated cell death process mediated by vacuolar membrane permeabilization. BaP1 also induced mitochondrial fragmentation and depolarization but did not lead to ROS accumulation, changes in intracellular Ca2+, or loss of plasma membrane integrity. Additionally, our results show that the cell death process is dependent on the vacuolar protease Pep4p and that the vacuole permeabilization results in its translocation from the vacuole to the cytosol. In addition, although nucleic acids are commonly described as targets of benzo[a]phenoxazines, we did not find any alterations at the DNA level. Our observations highlight BaP1 as a promising molecule for pharmacological application, using vacuole membrane permeabilization as a targeted approach.
Collapse
Affiliation(s)
- João Carlos Canossa Ferreira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.L.); (A.P.)
- Campus of Gualtar, IBS-Institute of Science and Innovation for Bio-Sustainability, University of Minho, 4710-057 Braga, Portugal
- Centre of Chemistry, Department of Chemistry, Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal;
- Correspondence: (J.C.C.F.); (M.J.S.)
| | - Carla Lopes
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.L.); (A.P.)
| | - Ana Preto
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.L.); (A.P.)
- Campus of Gualtar, IBS-Institute of Science and Innovation for Bio-Sustainability, University of Minho, 4710-057 Braga, Portugal
| | | | - Maria João Sousa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.L.); (A.P.)
- Campus of Gualtar, IBS-Institute of Science and Innovation for Bio-Sustainability, University of Minho, 4710-057 Braga, Portugal
- Correspondence: (J.C.C.F.); (M.J.S.)
| |
Collapse
|
6
|
Sousa RPCL, Ferreira JCC, Sousa MJ, Gonçalves MST. N-(5-Amino-9 H-benzo[ a]phenoxazin-9-ylidene)propan-1-aminium chlorides as antifungal agents and NIR fluorescent probes. NEW J CHEM 2021. [DOI: 10.1039/d1nj00879j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
New benzo[a]phenoxazinium chlorides (λemi ≤ 683 nm, ΦF ≤ 0.24, at pH = 7.4), best MIC 6.25 μM in Saccharomyces cerevisiae, stain vacuolar/perinuclear membranes of cells.
Collapse
Affiliation(s)
- Rui P. C. L. Sousa
- Centre of Chemistry
- Department of Chemistry
- University of Minho
- 4710-057 Braga
- Portugal
| | - João C. C. Ferreira
- Centre of Chemistry
- Department of Chemistry
- University of Minho
- 4710-057 Braga
- Portugal
| | - Maria João Sousa
- Centre of Molecular and Environmental Biology
- Department of Biology
- University of Minho
- 4710-057 Braga
- Portugal
| | | |
Collapse
|
7
|
Synthesis and photophysical studies of new benzo[a]phenoxazinium chlorides as potential antifungal agents. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.07.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Yang XB, Yang BX, Ge JF, Xu YJ, Xu QF, Liang J, Lu JM. Benzo[a]phenoxazinium-Based Red-Emitting Chemosensor for Zinc Ions in Biological Media. Org Lett 2011; 13:2710-3. [DOI: 10.1021/ol2008022] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xue-Bo Yang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China, and School of Radiation Medicine and Public Health, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China
| | - Bai-Xia Yang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China, and School of Radiation Medicine and Public Health, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China
| | - Jian-Feng Ge
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China, and School of Radiation Medicine and Public Health, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China
| | - Yu-Jie Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China, and School of Radiation Medicine and Public Health, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China
| | - Qing-Feng Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China, and School of Radiation Medicine and Public Health, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China
| | - Jie Liang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China, and School of Radiation Medicine and Public Health, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China
| | - Jian-Mei Lu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China, and School of Radiation Medicine and Public Health, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China
| |
Collapse
|
9
|
Bruyneel F, D'Auria L, Payen O, Courtoy PJ, Marchand-Brynaert J. Live-Cell Imaging with Water-Soluble Aminophenoxazinone Dyes Synthesised through Laccase Biocatalysis. Chembiochem 2010; 11:1451-7. [DOI: 10.1002/cbic.201000145] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Novel long alkyl side chain benzo[a]phenoxazinium chlorides: synthesis, photophysical behaviour and DNA interaction. Tetrahedron 2009. [DOI: 10.1016/j.tet.2009.10.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Lee MH, Lee SW, Kim SH, Kang C, Kim JS. Nanomolar Hg(II) Detection Using Nile Blue Chemodosimeter in Biological Media. Org Lett 2009; 11:2101-4. [DOI: 10.1021/ol900542y] [Citation(s) in RCA: 218] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Min Hee Lee
- Department of Chemistry, Korea University, Seoul 136-701, Korea, Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea, and The School of East-West Medical Science, Kyung Hee University, Yongin 446-701, Korea
| | - Soon W. Lee
- Department of Chemistry, Korea University, Seoul 136-701, Korea, Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea, and The School of East-West Medical Science, Kyung Hee University, Yongin 446-701, Korea
| | - Sang Hoon Kim
- Department of Chemistry, Korea University, Seoul 136-701, Korea, Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea, and The School of East-West Medical Science, Kyung Hee University, Yongin 446-701, Korea
| | - Chulhun Kang
- Department of Chemistry, Korea University, Seoul 136-701, Korea, Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea, and The School of East-West Medical Science, Kyung Hee University, Yongin 446-701, Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 136-701, Korea, Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea, and The School of East-West Medical Science, Kyung Hee University, Yongin 446-701, Korea
| |
Collapse
|
12
|
Verma S, Sallum UW, Athar H, Rosenblum L, Foley JW, Hasan T. Antimicrobial photodynamic efficacy of side-chain functionalized benzo[a]phenothiazinium dyes. Photochem Photobiol 2009; 85:111-8. [PMID: 18657053 DOI: 10.1111/j.1751-1097.2008.00403.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
5-(Ethylamino)-9-diethylaminobenzo[a]phenothiazinium chloride (EtNBS) is a photosensitizer (PS) with broad antimicrobial photodynamic activity. The objective of this study was to determine the antimicrobial photodynamic effect of side chain/end group modifications of EtNBS on two representative bacterial Gram-type-specific strains. Two EtNBS derivatives were synthesized, each functionalized with a different side-chain end-group, alcohol or carboxylic acid. In solution, both exhibited photochemical properties consistent with those of the EtNBS parent molecule. In vitro photodynamic therapy experiments revealed an initial Gram-type-specificity with two representative strains; both derivatives were phototoxic to Staphylococcus aureus 29,213 but the carboxylic acid derivative was nontoxic to Escherichia coli 25,922. This difference in photodynamic efficacy was not due to a difference in the binding of the two molecules to the bacteria as the amount of both derivatives bound by bacteria was identical. Interestingly, the carboxylic acid derivative produced no fluorescence emission when observed in cultures of E. coli via fluorescence microscopy. These early findings suggest that the addition of small functional groups could achieve Gram-type-specific phototoxicity through altering the photodynamic activity of PSs and deserve further exploration in a larger number of representative strains of each Gram type.
Collapse
Affiliation(s)
- Sarika Verma
- Wellman Center for Photomedicine, Massachusetts General Hospital and Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Frade VH, Coutinho PJ, Moura JC, Gonçalves MST. Functionalised benzo[a]phenoxazine dyes as long-wavelength fluorescent probes for amino acids. Tetrahedron 2007. [DOI: 10.1016/j.tet.2006.12.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|