1
|
Kiakos K, Englinger B, Yanow SK, Wernitznig D, Jakupec MA, Berger W, Keppler BK, Hartley JA, Lee M, Patil PC. Design, synthesis, nuclear localization, and biological activity of a fluorescent duocarmycin analog, HxTfA. Bioorg Med Chem Lett 2018; 28:1342-1347. [PMID: 29548574 DOI: 10.1016/j.bmcl.2018.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/23/2018] [Accepted: 03/05/2018] [Indexed: 01/20/2023]
Abstract
HxTfA 4 is a fluorescent analog of a potent cytotoxic and antimalarial agent, TfA 3, which is currently being investigated for the development of an antimalarial vaccine, PlasProtect®. HxTfA contains a p-anisylbenzimidazole or Hx moiety, which is endowed with a blue emission upon excitation at 318 nm; thus enabling it to be used as a surrogate for probing the cellular fate of TfA using confocal microscopy, and addressing the question of nuclear localization. HxTfA exhibits similar selectivity to TfA for A-tract sequences of DNA, alkylating adenine-N3, albeit at 10-fold higher concentrations. It also possesses in vitro cytotoxicity against A549 human lung carcinoma cells and Plasmodium falciparum. Confocal microscopy studies showed for the first time that HxTfA, and by inference TfA, entered A549 cells and localized in the nucleus to exert its biological activity. At biologically relevant concentrations, HxTfA elicits DNA damage response as evidenced by a marked increase in the levels of γH2AX observed by confocal microscopy and immunoblotting studies, and ultimately induces apoptosis.
Collapse
Affiliation(s)
- Konstantinos Kiakos
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, London WC1E 6BT, United Kingdom; Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria.
| | - Bernhard Englinger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | | | - Debora Wernitznig
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Michael A Jakupec
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Walter Berger
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria; Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - John A Hartley
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Moses Lee
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| | - Pravin C Patil
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| |
Collapse
|
2
|
Chanda PB, Boyle KE, Brody DM, Shukla V, Boger DL. Synthesis and evaluation of duocarmycin SA analogs incorporating the methyl 1,2,8,8a-tetrahydrocyclopropa[c]imidazolo[4,5-e]indol-4-one-6-carboxylate (CImI) alkylation subunit. Bioorg Med Chem 2016; 24:4779-4786. [PMID: 27221071 DOI: 10.1016/j.bmc.2016.04.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/18/2016] [Accepted: 04/23/2016] [Indexed: 10/21/2022]
Abstract
The design, synthesis, and evaluation of methyl 1,2,8,8a-tetrahydrocyclopropa[c]imidazolo[4,5-e]indol-4-one-6-carboxylate (CImI) derivatives are detailed representing analogs of duocarmycin SA and yatakemycin containing an imidazole replacement for the fused pyrrole found in the DNA alkylation subunit.
Collapse
Affiliation(s)
- Prem B Chanda
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Kristopher E Boyle
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Daniel M Brody
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Vyom Shukla
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Dale L Boger
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
3
|
Khan I, Ibrar A, Ahmed W, Saeed A. Synthetic approaches, functionalization and therapeutic potential of quinazoline and quinazolinone skeletons: the advances continue. Eur J Med Chem 2014; 90:124-69. [PMID: 25461317 DOI: 10.1016/j.ejmech.2014.10.084] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/10/2014] [Accepted: 10/31/2014] [Indexed: 12/18/2022]
Abstract
The presence of N-heterocycles as an essential structural motif in a variety of biologically active substances has stimulated the development of new strategies and technologies for their synthesis. Among the various N-heterocyclic scaffolds, quinazolines and quinazolinones form a privileged class of compounds with their diverse spectrum of therapeutic potential. The easy generation of complex molecular diversity through broadly applicable, cost-effective, practical and sustainable synthetic methods in a straightforward fashion along with the importance of these motifs in medicinal chemistry, received significant attention from researchers engaged in drug design and heterocyclic methodology development. In this perspective, the current review article is an effort to recapitulate recent developments in the eco-friendly and green procedures for the construction of highly challenging and potentially bioactive quinazoline and quinazolinone compounds in order to help medicinal chemists in designing and synthesizing novel and potent compounds for the treatment of different disorders. The key mechanistic insights for the synthesis of these heterocycles along with potential applications and manipulations of the products have also been conferred. This article also aims to highlight the promising future directions for the easy access to these frameworks in addition to the identification of more potent and specific products for numerous biological targets.
Collapse
Affiliation(s)
- Imtiaz Khan
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Aliya Ibrar
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Waqas Ahmed
- Office of Research, Innovation and Commercialization, University of Gujrat, Gujrat 50700, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
4
|
Patil PC, Lee M. An efficient synthesis of furano analogs of duocarmycin C1 and C2: seco-iso-cyclopropylfurano[e]indoline-trimethoxyindole and seco-cyclopropylfurano[f]quinoline-trimethoxyindole. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.04.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Shawakfeh KQ, Ishtaiwi ZN, Al-Said NH. Facile access to a benzoazepinoquinazolinone via a free radical cyclization. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|