1
|
Ohta H, Asahara R, Ikeda R, Sakamoto T, Hayashi M. A Protocol for the Synthesis of Organophosphorus(V) Compounds with P-N and P-O Bonds by Umpolung Strategy Using Hydroxymethylphosphine Sulfides. J Org Chem 2025; 90:824-829. [PMID: 39701961 DOI: 10.1021/acs.joc.4c01832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Versatile P-N and P-O bond-forming reactions by an umpolung approach using air- and moisture-stable hydroxymethylphosphine sulfides were developed. Phosphine sulfides containing multiple hydroxymethyl groups could undergo sequential transformations combining P-N and P-O as well as P-C bond formations, providing a novel protocol for the synthesis of a variety of organophosphorus(V) compounds with P-N and P-O bonds.
Collapse
Affiliation(s)
- Hidetoshi Ohta
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Ryosuke Asahara
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Ryusei Ikeda
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Tateyuki Sakamoto
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Minoru Hayashi
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790-8577, Japan
| |
Collapse
|
2
|
Fonseca A, Bugaev AL, Pnevskaya AY, Janssens K, Marquez C, De Vos D. Copper-cobalt double metal cyanides as green catalysts for phosphoramidate synthesis. Commun Chem 2023; 6:141. [PMID: 37407755 DOI: 10.1038/s42004-023-00927-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/08/2023] [Indexed: 07/07/2023] Open
Abstract
Phosphoramidates are common and widespread backbones of a great variety of fine chemicals, pharmaceuticals, additives and natural products. Conventional approaches to their synthesis make use of toxic chlorinated reagents and intermediates, which are sought to be avoided at an industrial scale. Here we report the coupling of phosphites and amines promoted by a Cu3[Co(CN)6]2-based double metal cyanide heterogeneous catalyst using I2 as additive for the synthesis of phosphoramidates. This strategy successfully provides an efficient, environmentally friendly alternative to the synthesis of these valuable compounds in high yields and it is, to the best of our knowledge, the first heterogeneous approach to this protocol. While the detailed study of the catalyst structure and of the metal centers by PXRD, FTIR, EXAFS and XANES revealed changes in their coordination environment, the catalyst maintained its high activity for at least 5 consecutive iterations of the reaction. Preliminary mechanism studies suggest that the reaction proceeds by a continuous change in the oxidation state of the Cu metal, induced by a O2/I- redox cycle.
Collapse
Affiliation(s)
- Alejandro Fonseca
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
- Department of Polymer Engineering and Science, Polymer Processing, Montanuniversitaet Leoben, Otto Gloeckel-Strasse 2, 8700, Leoben, Austria
| | - Aram L Bugaev
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, Rostov-on-Don, 344090, Russia
- Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - Anna Yu Pnevskaya
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, Rostov-on-Don, 344090, Russia
| | - Kwinten Janssens
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Carlos Marquez
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium.
| | - Dirk De Vos
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium.
| |
Collapse
|
3
|
Goulart HA, Araujo DR, Iarocz LEB, Pizzi BR, Barcellos T, Silva MS, Perin G. Synthesis of Phosphate Esters by Using Diphenyl Ditelluride as Organocatalyst. European J Org Chem 2023. [DOI: 10.1002/ejoc.202300021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Helen A. Goulart
- Laboratório de Síntese Orgânica Limpa LASOL CCQFA Universidade Federal de Pelotas – UFPel p.o. box 534 6010-900 Pelotas RS Brazil
| | - Daniela R. Araujo
- Laboratório de Síntese Orgânica Limpa LASOL CCQFA Universidade Federal de Pelotas – UFPel p.o. box 534 6010-900 Pelotas RS Brazil
| | - Lucas E. B. Iarocz
- Laboratório de Síntese Orgânica Limpa LASOL CCQFA Universidade Federal de Pelotas – UFPel p.o. box 534 6010-900 Pelotas RS Brazil
| | - Bruna R. Pizzi
- Laboratório de Síntese Orgânica Limpa LASOL CCQFA Universidade Federal de Pelotas – UFPel p.o. box 534 6010-900 Pelotas RS Brazil
| | - Thiago Barcellos
- Laboratório de Biotecnologia de Produtos Naturais e Sintéticos Universidade de Caxias do Sul – UCS 95070-560 Caxias do Sul RS Brazil
| | - Márcio S. Silva
- Laboratório de Síntese Orgânica Limpa LASOL CCQFA Universidade Federal de Pelotas – UFPel p.o. box 534 6010-900 Pelotas RS Brazil
| | - Gelson Perin
- Laboratório de Síntese Orgânica Limpa LASOL CCQFA Universidade Federal de Pelotas – UFPel p.o. box 534 6010-900 Pelotas RS Brazil
| |
Collapse
|
4
|
Li S, Fang L, Dou Q, Wang T, Cheng B. Recent advances in phosphorylation of hetero-nucleophilic reagents via P–H bond cleavage. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
5
|
Diem Ferreira Xavier MC, Hartwig D, Lima Valente LC, Silva MS. Ditelluride-Catalyzed synthesis of phosphoramidates: A design of experiment approach. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Zheng L, Cai L, Mei W, Liu G, Deng L, Zou X, Zhuo X, Zhong Y, Guo W. Copper-Catalyzed Phosphorylation of N, N-Disubstituted Hydrazines: Synthesis of Multisubstituted Phosphorylhydrazides as Potential Anticancer Agents. J Org Chem 2022; 87:6224-6236. [PMID: 35442041 DOI: 10.1021/acs.joc.2c00452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
An efficient copper-catalyzed aerobic oxidative cross-dehydrogenative coupling reaction for the synthesis of multisubstituted phosphorylhydrazides from N,N-disubstituted hydrazines and hydrogen phosphoryl compounds is accomplished. The reaction proceeds under mild conditions without the addition of any external oxidants and bases. This work reported here represents a direct P(═O)-N-N bond formation with the advantages of being operationally simple, good functional group tolerance, and high atom and step economy. Furthermore, the selected compounds exhibit potential inhibitory activity against tumor cells, which can be used in the field of screening of anticancer agents as new chemical entities.
Collapse
Affiliation(s)
- Lvyin Zheng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Liuhuan Cai
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Weijie Mei
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Gongping Liu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Ling Deng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Xiaoying Zou
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Xiaoya Zhuo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Yumei Zhong
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Wei Guo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
7
|
Xu Y, Zhou X, Chen L, Ma Y, Wu G. The copper-catalyzed radical aminophosphinoylation of maleimides with anilines and diarylphosphine oxides. Org Chem Front 2022. [DOI: 10.1039/d2qo00184e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The radical aminophosphinoylation of maleimides with anilines and diarylphosphine oxides.
Collapse
Affiliation(s)
- Yaling Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xueying Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Luya Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yunfei Ma
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ge Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
8
|
Zhu YY, Niu Y, Niu YN, Yang SD. Recent advances in the synthesis and applications of phosphoramides. Org Biomol Chem 2021; 19:10296-10313. [PMID: 34812834 DOI: 10.1039/d1ob01566d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Phosphoramide, as an important framework of many biologically active molecules, has attracted widespread attention in recent decades. It is not only widely used in pharmaceuticals because of its excellent biological activities, but it also shows good performance in organic dyes, flame retardants and extractors. Thus, it is of great significance to develop effective and convenient methods for the synthesis of phosphoramides. In this review, the recent advancements made in the synthesis routes and applications of phosphoramides are discussed. The synthetic strategies of phosphoramides can be separated into five categories: phosphorus halides as the substrate, phosphates as the substrate, phosphorus hydrogen as the substrate, azides as the substrate and other methods. The latest examples of these methods are provided and some representative mechanisms are also described.
Collapse
Affiliation(s)
- Yuan-Yuan Zhu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.
| | - Yuan Niu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.
| | - Yan-Ning Niu
- Department of Teaching and Research, Nanjing Forestry University, Huaian 223003, P. R. China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
9
|
Sabourin A, Dufour J, Vors JP, Bernier D, Montchamp JL. Synthesis of P-Substituted 5- and 6-Membered Benzo-Phostams: 2,3-Dihydro-1 H-1,2-benzazaphosphole 2-Oxides and 2,3-Tetrahydro-1 H-1,2-benzazaphosphinine 2-Oxides. J Org Chem 2021; 86:14684-14694. [PMID: 34633805 DOI: 10.1021/acs.joc.1c01501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several approaches were developed for the preparation of phosphorus-substituted 5- and 6-membered benzophostams. Carbodiimide-promoted cyclization of zwitterionic aminophosphinates derived from a nitrobenzene precursor accomplished the cyclization in good yields. Alternatively, a novel copper-catalyzed cross-coupling between a phosphonamide and a bromobenzene precursor produced the heterocycles in moderate to good yields. Three different methods are compared for the synthesis of the P-ethoxy-substituted 5-membered benzophostam.
Collapse
Affiliation(s)
- Axel Sabourin
- Department of Chemistry and Biochemistry, TCU Box 298860, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Jeremy Dufour
- Bayer SAS, Centre de Recherche La Dargoire, 14-20 impasse Pierre Baizet, CEDEX, Lyon 69263, France
| | - Jean-Pierre Vors
- Bayer SAS, Centre de Recherche La Dargoire, 14-20 impasse Pierre Baizet, CEDEX, Lyon 69263, France
| | - David Bernier
- Bayer SAS, Centre de Recherche La Dargoire, 14-20 impasse Pierre Baizet, CEDEX, Lyon 69263, France
| | - Jean-Luc Montchamp
- Department of Chemistry and Biochemistry, TCU Box 298860, Texas Christian University, Fort Worth, Texas 76129, United States
| |
Collapse
|
10
|
Wang S, Ma S, Yang J, Li W, Li D, Yang J. Copper‐Phosphine Mediated Oxidative Phosphorylation of Aromatic Amines and P(OR)
3
under Aerobic Conditions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shihaozhi Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering College of Chemistry and Chemical Engineering Ningxia University Yinchuan 750021 China
| | - Shidi Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering College of Chemistry and Chemical Engineering Ningxia University Yinchuan 750021 China
| | - Jiale Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering College of Chemistry and Chemical Engineering Ningxia University Yinchuan 750021 China
| | - Wenshuang Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering College of Chemistry and Chemical Engineering Ningxia University Yinchuan 750021 China
| | - Dianjun Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering College of Chemistry and Chemical Engineering Ningxia University Yinchuan 750021 China
| | - Jinhui Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering College of Chemistry and Chemical Engineering Ningxia University Yinchuan 750021 China
| |
Collapse
|
11
|
Zhong Z, Xu P, Zhou A. Electrochemical phosphorylation of arenols and anilines leading to organophosphates and phosphoramidates. Org Biomol Chem 2021; 19:5342-5347. [PMID: 34043743 DOI: 10.1039/d1ob00779c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A practical phosphorylation for generating organophosphates and phosphoramidates via electrochemical dehydrogenative cross-coupling of P(O)H compounds with arenols and anilines is disclosed. This method involves using inorganic iodide salts as both redox catalysts and electrolytes in an undivided cell without the addition of oxidants or bases. A preliminary mechanistic study suggests that radicals are not involved in this process. This method is green and eco-friendly and has good functional group tolerance, high yields and broad substrate scope, with the potential for practical synthesis.
Collapse
Affiliation(s)
- Zijian Zhong
- School of Pharmacy, Jiangsu University, Xuefu Road 301, Zhenjiang, Jiangsu 212013, China.
| | - Pan Xu
- School of Pharmacy, Jiangsu University, Xuefu Road 301, Zhenjiang, Jiangsu 212013, China.
| | - Aihua Zhou
- School of Pharmacy, Jiangsu University, Xuefu Road 301, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
12
|
Lee KL, Feld J, Hume P, Söhnel T, Leitao E. The Synthesis and Mechanistic Considerations of a Series of Ammonium Monosubstituted H-Phosphonate Salts. Chemistry 2021; 27:815-824. [PMID: 32830385 DOI: 10.1002/chem.202003090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/01/2020] [Indexed: 11/11/2022]
Abstract
A series of ammonium monosubstituted H-phosphonate salts were synthesized by combining H-phosphonate diesters with amines in the absence of solvent at 80 °C. Variation of the ester substituent and amine produced a range of ionic liquids with low melting points. The products and by-products were analyzed by spectroscopic and spectrometric techniques in order to get a better mechanistic picture of the dealkylation and formal dearylation observed. For dialkyl H-phosphonate diesters, (RO)2 P(O)H (R=alkyl), the reaction proceeds via direct dealkylation with the reactivity increasing in the order R=iPr<Et<Me corresponding to DFT calculated activation enthalpies of 22.6, 20.8, and 17.9 kcal mol-1 . For the diphenyl H-phosphonate diesters, (PhO)2 P(O)H, the dearylation was found to proceed via phenol-assisted formation of a 5-coordinate intermediate, (PhO)3 PH(OH), from which P(OPh)3 and water were eliminated. The presence of an equivalent of water then facilitated the formation of P(OH)2 OPh and the amine, R'NH2 , subsequently abstracted a proton from it to yield [(PhO)PH(O)O]- [R'NH3 ]+ .
Collapse
Affiliation(s)
- Keng Lung Lee
- School of Chemical Sciences, University of Auckland, Private Bag, 92019, Auckland, 1142, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Joey Feld
- School of Chemical Sciences, University of Auckland, Private Bag, 92019, Auckland, 1142, New Zealand
| | - Paul Hume
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand.,School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, 6140, Wellington, New Zealand
| | - Tilo Söhnel
- School of Chemical Sciences, University of Auckland, Private Bag, 92019, Auckland, 1142, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Erin Leitao
- School of Chemical Sciences, University of Auckland, Private Bag, 92019, Auckland, 1142, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| |
Collapse
|
13
|
Itumoh EJ, Data S, Leitao EM. Opening up the Toolbox: Synthesis and Mechanisms of Phosphoramidates. Molecules 2020; 25:E3684. [PMID: 32823507 PMCID: PMC7463754 DOI: 10.3390/molecules25163684] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 11/25/2022] Open
Abstract
This review covers the main synthetic routes to and the corresponding mechanisms of phosphoramidate formation. The synthetic routes can be separated into six categories: salt elimination, oxidative cross-coupling, azide, reduction, hydrophosphinylation, and phosphoramidate-aldehyde-dienophile (PAD). Examples of some important compounds synthesized through these routes are provided. As an important class of organophosphorus compounds, the applications of phosphoramidate compounds, are also briefly introduced.
Collapse
Affiliation(s)
- Emeka J. Itumoh
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand; (E.J.I.); (S.D.)
- Department of Industrial Chemistry, Ebonyi State University, Abakaliki 480001, Ebonyi State, Nigeria
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Shailja Data
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand; (E.J.I.); (S.D.)
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Erin M. Leitao
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand; (E.J.I.); (S.D.)
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
14
|
Handoko, Benslimane Z, Arora PS. Diselenide-Mediated Catalytic Functionalization of Hydrophosphoryl Compounds. Org Lett 2020; 22:5811-5816. [DOI: 10.1021/acs.orglett.0c01858] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Handoko
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Zacharia Benslimane
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Paramjit S. Arora
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
15
|
Tan C, Liu X, Jia H, Zhao X, Chen J, Wang Z, Tan J. Practical Synthesis of Phosphinic Amides/Phosphoramidates through Catalytic Oxidative Coupling of Amines and P(O)-H Compounds. Chemistry 2019; 26:881-887. [PMID: 31625634 DOI: 10.1002/chem.201904237] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/17/2019] [Indexed: 12/24/2022]
Abstract
Herein, we report a highly efficient ZnI2 -triggered oxidative cross-coupling reaction of P(O)-H compounds and amines. This operationally simple protocol provides unprecedented generic access to phosphinic amides/phosphoramidate derivatives in good yields and short reaction time. Besides, the reaction proceeds under mild conditions, which avoids the use of hazardous reagents, and is applicable to scale-up syntheses as well as late-stage functionalization of drug molecules. The stereospecific coupling is also achieved from readily available optically enriched P(O)-H compounds.
Collapse
Affiliation(s)
- Chen Tan
- Department of Organic Chemistry, Beijing Advanced Innovation Center for, Soft Matter Science and Engineering, College of Science, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xinyuan Liu
- Department of Organic Chemistry, Beijing Advanced Innovation Center for, Soft Matter Science and Engineering, College of Science, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Huanxin Jia
- Department of Organic Chemistry, Beijing Advanced Innovation Center for, Soft Matter Science and Engineering, College of Science, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaowen Zhao
- Department of Organic Chemistry, Beijing Advanced Innovation Center for, Soft Matter Science and Engineering, College of Science, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jian Chen
- Department of Organic Chemistry, Beijing Advanced Innovation Center for, Soft Matter Science and Engineering, College of Science, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhiyong Wang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry &, Center for Excellence in Molecular Synthesis of, the Chinese Academy of Sciences, University of Science and Technology of China Institution, Hefei, 230026, P. R. China
| | - Jiajing Tan
- Department of Organic Chemistry, Beijing Advanced Innovation Center for, Soft Matter Science and Engineering, College of Science, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
16
|
Lee KL, Feld J, Ben‐Tal Y, Guo Z, Hume P, Leitao EM. Facile Substituent Exchange at
H
‐Phosphonate Diesters Limiting an Effective Synthesis of
D
‐Phosphonate Diesters. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Keng Lung Lee
- School of Chemical SciencesUniversity of Auckland, Private Bag 92019 Auckland 1142 New Zealand
| | - Joey Feld
- School of Chemical SciencesUniversity of Auckland, Private Bag 92019 Auckland 1142 New Zealand
| | - Yael Ben‐Tal
- School of Chemical SciencesUniversity of Auckland, Private Bag 92019 Auckland 1142 New Zealand
| | - Zhaoyang Guo
- School of Chemical SciencesUniversity of Auckland, Private Bag 92019 Auckland 1142 New Zealand
| | - Paul Hume
- School of Chemical and Physical SciencesVictoria University Wellington, Wellington 6010 New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology New Zealand
| | - Erin M. Leitao
- School of Chemical SciencesUniversity of Auckland, Private Bag 92019 Auckland 1142 New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology New Zealand
| |
Collapse
|
17
|
Chen X, Xiao Z, Chu H, Wang B, Peng AY. Reinvestigation of the iodine-mediated phosphoramidation reaction of amines and P(OR) 3 and its synthetic applications. Org Biomol Chem 2019; 16:6783-6790. [PMID: 30198043 DOI: 10.1039/c8ob01840e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A systematic study on the iodine-mediated phosphoramidation reaction of amines and trialkyl phosphites was conducted, which not only disclosed the factors affecting the reaction but also revealed that it could proceed smoothly in CH2Cl2 at room temperature in open air. Using this method, various phosphoramidates with different aliphatic amines and aromatic amines were synthesized in good to excellent yields. Our present investigation shows that this underused method is actually a mild, practical and general way to synthesize phosphoramidates and will have wide applications.
Collapse
Affiliation(s)
- Xunwei Chen
- School of Chemistry, Sun Yat-sen University, 135 Xingangxi Lu, Guangzhou, 510275, China.
| | | | | | | | | |
Collapse
|
18
|
Hosseinian A, Farshbaf S, Fekri LZ, Nikpassand M, Vessally E. Cross-Dehydrogenative Coupling Reactions Between P(O)–H and X–H (X = S, N, O, P) Bonds. Top Curr Chem (Cham) 2018; 376:23. [DOI: 10.1007/s41061-018-0200-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 04/24/2018] [Indexed: 01/07/2023]
|
19
|
Hosseini Nasab FA, Fekri LZ, Monfared A, Hosseinian A, Vessally E. Recent advances in sulfur–nitrogen bond formation via cross-dehydrogenative coupling reactions. RSC Adv 2018; 8:18456-18469. [PMID: 35541136 PMCID: PMC9080640 DOI: 10.1039/c8ra00356d] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/12/2018] [Indexed: 11/21/2022] Open
Abstract
This focus-review surveys literature methods for the construction of sulfur–nitrogen bonds through cross-dehydrogenative coupling reactions between thiols and N–H compounds with a particular emphasis on the mechanistic aspects of the reactions. The literature has been surveyed until the end of 2017. This review surveys the construction of sulfur–nitrogen bonds through cross-dehydrogenative coupling reactions between thiols and N–H compounds.![]()
Collapse
Affiliation(s)
| | | | | | - Akram Hosseinian
- Department of Engineering Science
- College of Engineering
- University of Tehran
- Tehran
- Iran
| | | |
Collapse
|
20
|
Li Y, Liang F. With DBU-activated N-bromophthalimide as potential N-sources to achieve P–N cross-coupling of P(O)–H compounds. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.05.076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
21
|
Zhang JQ, Xiong YS, Chan ASC, Lu G. Cu(ii)-catalyzed cross-dehydrogenative coupling reaction of N′-acyl arylhydrazines and phosphites. RSC Adv 2016. [DOI: 10.1039/c6ra13931k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel Cu(ii)-catalyzed cross-dehydrogenative coupling reaction of N′-aryl acylhydrazines and dialkyl phosphites has been developed for the synthesis of phosphorylhydrazides by using NMO as an external oxidant and AgNO3 as additive.
Collapse
Affiliation(s)
- Ji-Quan Zhang
- Institute of Medicinal Chemistry
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- P. R. China
| | - Yan-Shi Xiong
- Institute of Medicinal Chemistry
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- P. R. China
| | - Albert S. C. Chan
- Institute of Medicinal Chemistry
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- P. R. China
| | - Gui Lu
- Institute of Medicinal Chemistry
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- P. R. China
| |
Collapse
|
22
|
Chen T, Zhang JS, Han LB. Dehydrogenative coupling involving P(O)–H bonds: a powerful way for the preparation of phosphoryl compounds. Dalton Trans 2016; 45:1843-9. [DOI: 10.1039/c5dt01896j] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This Frontier highlights the recent progress in the preparation of organophosphorus compounds via transition metal-catalysed dehydrogenative couplings of P(O)H compounds with Z–H compounds.
Collapse
Affiliation(s)
- Tieqiao Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Ji-Shu Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Li-Biao Han
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| |
Collapse
|
23
|
Recent advances in H-phosphonate chemistry. Part 1. H-phosphonate esters: synthesis and basic reactions. Top Curr Chem (Cham) 2015; 361:137-77. [PMID: 25370520 DOI: 10.1007/128_2014_562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This review covers recent progress in the preparation of H-phosphonate mono- and diesters, basic studies on mechanistic and stereochemical aspects of this class of phosphorus compounds, and their fundamental chemistry in terms of transformation of P-H bonds into P-heteroatom bonds. Selected recent applications of H-phosphonate derivatives in basic organic phosphorus chemistry and in the synthesis of biologically important phosphorus compounds are also discussed.
Collapse
|
24
|
Yang J, Chen T, Zhou Y, Yin S, Han LB. Palladium-catalyzed dehydrogenative coupling of terminal alkynes with secondary phosphine oxides. Chem Commun (Camb) 2015; 51:3549-51. [DOI: 10.1039/c4cc09567g] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The palladium-catalyzed dehydrogenative coupling of alkynes with secondary phosphine oxides is developed. Thus, in the presence of a silver additive, palladium acetate could efficiently catalyze the dehydrocoupling of secondary phosphine oxides with a variety of alkynes to produce the corresponding alkynylphosphine oxides in high yields. A reaction mechanism is proposed.
Collapse
Affiliation(s)
- Jia Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Tieqiao Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Yongbo Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Shuangfeng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Li-Biao Han
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| |
Collapse
|
25
|
Zhou Y, Yang J, Chen T, Yin SF, Han D, Han LB. Stereospecific Aerobic Oxidative Dehydrocoupling of P(O)–H Bonds with Amines Catalyzed by Copper. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2014. [DOI: 10.1246/bcsj.20130310] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yongbo Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
| | - Jia Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
| | - Tieqiao Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
| | - Daoqing Han
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
| | - Li-Biao Han
- National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|