1
|
Limantseva RM, Savchenko RG, Odinokov VN, Tolstikov AG. Povarov Reaction in the Synthesis of Polycyclic Compounds with a Tetrahydroquinoline Fragment. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022120235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
2
|
de Fátima Â, Fernandes SA, Ferreira de Paiva W, de Freitas Rego Y. The Povarov Reaction: A Versatile Method to Synthesize Tetrahydroquinolines, Quinolines and Julolidines. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1794-8355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractThe multicomponent Povarov reaction represents a powerful approach for the construction of substances containing N-heterocyclic frameworks. By using the Povarov reaction, in addition to accessing tetrahydroquinolines, quinolines and julolidines in a single step, it is possible to form the following new bonds: two Csp
3–Csp
3 and one Csp
3–Nsp
3, two Csp
2–Csp
2 and one Csp
2–Nsp
2, and four Csp
3–Csp
3 and two Csp
3–Nsp
1, respectively. This short review discusses the main features of the Povarov reaction, including its mechanism, the reaction scope by employing different catalysts and substrates, as well as stereoselective versions.1 Introduction2 Mechanism of the Povarov Reaction3 Tetrahydroquinolines4 Quinolines5 Julolidines6 Concluding Remarks
Collapse
Affiliation(s)
- Ângelo de Fátima
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais
| | | | | | | |
Collapse
|
3
|
Vil' V, Grishin S, Baberkina E, Alekseenko A, Glinushkin A, Kovalenko A, Terent'ev A. Electrochemical Synthesis of Tetrahydroquinolines from Imines and Cyclic Ethers via Oxidation/Aza‐Diels‐Alder Cycloaddition. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Vera Vil'
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences RUSSIAN FEDERATION
| | - Sergei Grishin
- Zelinsky Institute of Organic Chemistry RAS RUSSIAN FEDERATION
| | - Elena Baberkina
- Dmitry Mendeleev University of Chemical Technology of Russia RUSSIAN FEDERATION
| | - Anna Alekseenko
- Zelinsky Institute of Organic Chemistry RAS RUSSIAN FEDERATION
| | | | - Alexey Kovalenko
- Dmitry Mendeleev University of Chemical Technology of Russia RUSSIAN FEDERATION
| | - Alexander Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences RUSSIAN FEDERATION
| |
Collapse
|
4
|
Gulsevin A, Papke RL, Stokes C, Tran HNT, Jin AH, Vetter I, Meiler J. The Allosteric Activation of α7 nAChR by α-Conotoxin MrIC Is Modified by Mutations at the Vestibular Site. Toxins (Basel) 2021; 13:toxins13080555. [PMID: 34437426 PMCID: PMC8402416 DOI: 10.3390/toxins13080555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
α-conotoxins are 13–19 amino acid toxin peptides that bind various nicotinic acetylcholine receptor (nAChR) subtypes. α-conotoxin Mr1.7c (MrIC) is a 17 amino acid peptide that targets α7 nAChR. Although MrIC has no activating effect on α7 nAChR when applied by itself, it evokes a large response when co-applied with the type II positive allosteric modulator PNU-120596, which potentiates the α7 nAChR response by recovering it from a desensitized state. A lack of standalone activity, despite activation upon co-application with a positive allosteric modulator, was previously observed for molecules that bind to an extracellular domain allosteric activation (AA) site at the vestibule of the receptor. We hypothesized that MrIC may activate α7 nAChR allosterically through this site. We ran voltage-clamp electrophysiology experiments and in silico peptide docking calculations in order to gather evidence in support of α7 nAChR activation by MrIC through the AA site. The experiments with the wild-type α7 nAChR supported an allosteric mode of action, which was confirmed by the significantly increased MrIC + PNU-120596 responses of three α7 nAChR AA site mutants that were designed in silico to improve MrIC binding. Overall, our results shed light on the allosteric activation of α7 nAChR by MrIC and suggest the involvement of the AA site.
Collapse
Affiliation(s)
- Alican Gulsevin
- Center for Structural Biology, Department of Chemistry, Vanderbilt University, Nashville, TN 37212, USA;
- Correspondence:
| | - Roger L. Papke
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (R.L.P.); (C.S.)
| | - Clare Stokes
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (R.L.P.); (C.S.)
| | - Hue N. T. Tran
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; (H.N.T.T.); (A.H.J.); (I.V.)
| | - Aihua H. Jin
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; (H.N.T.T.); (A.H.J.); (I.V.)
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; (H.N.T.T.); (A.H.J.); (I.V.)
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Jens Meiler
- Center for Structural Biology, Department of Chemistry, Vanderbilt University, Nashville, TN 37212, USA;
- Institute for Drug Discovery, Leipzig University Medical School, 04103 Leipzig, Germany
| |
Collapse
|
5
|
Pismataro MC, Horenstein NA, Stokes C, Dallanoce C, Thakur GA, Papke RL. Stable desensitization of α 7 nicotinic acetylcholine receptors by NS6740 requires interaction with S36 in the orthosteric agonist binding site. Eur J Pharmacol 2021; 905:174179. [PMID: 34004208 DOI: 10.1016/j.ejphar.2021.174179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 01/09/2023]
Abstract
NS6740 is an α7 nicotinic acetylcholine receptor-selective partial agonist with low efficacy for channel activation, capable of promoting the stable conversion of the receptors to nonconducting (desensitized) states that can be reactivated with the application of positive allosteric modulators (PAMs). In spite of its low efficacy for channel activation, NS6740 is an effective activator of the cholinergic anti-inflammatory pathway. We observed that the concentration-response relationships for channel activation, both when applied alone and when co-applied with the PAM PNU-120596 are inverted-U shaped with inhibitory/desensitizing activities dominant at high concentrations. We evaluated the potential importance of recently identified binding sites for allosteric activators and tested the hypotheses that the stable desensitization produced by NS6740 may be due to binding to these sites. Our experiments were guided by molecular modeling of NS6740 binding to both the allosteric and orthosteric activation sites on the receptor. Our results indicate that with α7C190A mutants, which have compromised orthosteric activation sites, NS6740 may work at the allosteric activation sites to promote transient PAM-dependent currents but not the stable desensitization seen with wild-type α7 receptors. Modeling NS6740 in the orthosteric binding sites identified S36 as an important residue for NS6740 binding and predicted that an S36V mutation would limit NS6740 activity. The efficacy of NS6740 for α7S36V receptors was reduced to zero, and applications of the compound to α7S36V receptors failed to induce the desensitization observed with wild-type receptors. The results indicate that the unique properties of NS6740 are due primarily to binding at the sites for orthosteric agonists.
Collapse
Affiliation(s)
- Maria Chiara Pismataro
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section "Pietro Pratesi", University of Milan, Via L. Mangiagalli 25, 20133, Milan, Italy; Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611-7200, USA
| | - Nicole A Horenstein
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611-7200, USA
| | - Clare Stokes
- Department of Pharmacology and Therapeutics, University of Florida, P.O. Box 100267, Gainesville, FL, 32610-0267, USA
| | - Clelia Dallanoce
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section "Pietro Pratesi", University of Milan, Via L. Mangiagalli 25, 20133, Milan, Italy.
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, P.O. Box 100267, Gainesville, FL, 32610-0267, USA
| |
Collapse
|
6
|
Miller DR, Khoshbouei H, Garai S, Cantwell LN, Stokes C, Thakur G, Papke RL. Allosterically Potentiated α7 Nicotinic Acetylcholine Receptors: Reduced Calcium Permeability and Current-Independent Control of Intracellular Calcium. Mol Pharmacol 2020; 98:695-709. [PMID: 33020143 PMCID: PMC7662531 DOI: 10.1124/molpharm.120.000012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/10/2020] [Indexed: 11/22/2022] Open
Abstract
The currents of α7 nicotinic acetylcholine receptors activated by acetylcholine (ACh) are brief. The channel has high permeability to calcium relative to monovalent cations and shows inward rectification. It has been previously noted that in the presence of positive allosteric modulators (PAMs), currents through the channels of α7 receptors differ from normal α7 currents both in sensitivity to specific channel blockers and their current-voltage (I-V) relationships, no longer showing inward rectification. Linear I-V functions are often associated with channels lacking calcium permeability, so we measured the I-V functions of α7 receptors activated by ACh when PAMs were bound to the allosteric binding site in the transmembrane domain. Currents were recorded in chloride-free Ringer's solution with low or high concentrations of extracellular calcium to determine the magnitude of the reversal potential shift in the two conditions as well as the I-V relationships. ACh-evoked currents potentiated by the allosteric agonist-PAMs (ago-PAMs) (3aR,4S,9bS)-4-(4-bromophenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide (GAT107) and 3-(3,4-difluorophenyl)-N-(1-(6-(4-(pyridin-2-yl)piperazin-1-yl)pyrazin-2-yl)ethyl)propenamide (B-973B) showed reduced inward rectification and calcium-dependent reversal potential shifts decreased by 80%, and 50%, respectively, compared with currents activated by ACh alone, indicative of reduced calcium permeability. Currents potentiated by 3a,4,5,9b-tetrahydro-4-(1-naphthalenyl)-3H-cyclopentan[c]quinoline-8-sulfonamide were also linear and showed no calcium-dependent reversal potential shifts. The ago-PAMs GAT-107 and B-973B stimulated increases in intracellular calcium in stably transfected HEK293 cells. However, these calcium signals were delayed relative to channel activation produced by these agents and were insensitive to the channel blocker mecamylamine. Our results indicate that, although allosterically activated α7 nicotinic ACh receptor may affect intracellular calcium levels, such effects are not likely due to large channel-dependent calcium influx. SIGNIFICANCE STATEMENT: Positive allosteric modulators (PAMs) of α7 nicotinic acetylcholine receptor can increase channel activation by two or more orders of magnitude, raising the concern that, due to the relatively high calcium permeability of α7 receptors activated by acetylcholine alone, such efficacious PAMs may have cytotoxic side effects. We show that PAMs alter the ion conduction pathway and, in general, reduce the calcium permeability of the channels. This supports the hypothesis that α7 effects on intracellular calcium may be independent of channel-mediated calcium influx.
Collapse
Affiliation(s)
- Douglas R Miller
- Departments of Neuroscience (D.R.M., H.K.) and Pharmacology and Therapeutics (C.S., R.L.P.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., L.N.C., G.T.)
| | - Habibeh Khoshbouei
- Departments of Neuroscience (D.R.M., H.K.) and Pharmacology and Therapeutics (C.S., R.L.P.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., L.N.C., G.T.)
| | - Sumanta Garai
- Departments of Neuroscience (D.R.M., H.K.) and Pharmacology and Therapeutics (C.S., R.L.P.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., L.N.C., G.T.)
| | - Lucas N Cantwell
- Departments of Neuroscience (D.R.M., H.K.) and Pharmacology and Therapeutics (C.S., R.L.P.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., L.N.C., G.T.)
| | - Clare Stokes
- Departments of Neuroscience (D.R.M., H.K.) and Pharmacology and Therapeutics (C.S., R.L.P.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., L.N.C., G.T.)
| | - Ganesh Thakur
- Departments of Neuroscience (D.R.M., H.K.) and Pharmacology and Therapeutics (C.S., R.L.P.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., L.N.C., G.T.)
| | - Roger L Papke
- Departments of Neuroscience (D.R.M., H.K.) and Pharmacology and Therapeutics (C.S., R.L.P.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., L.N.C., G.T.)
| |
Collapse
|
7
|
Papke RL, Garai S, Stokes C, Horenstein NA, Zimmerman AD, Abboud KA, Thakur GA. Differing Activity Profiles of the Stereoisomers of 2,3,5,6TMP-TQS, a Putative Silent Allosteric Modulator of α7 nAChR. Mol Pharmacol 2020; 98:292-302. [PMID: 32690627 PMCID: PMC7472127 DOI: 10.1124/mol.120.119958] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Many synthetic compounds to which we attribute specific activities are produced as racemic mixtures of stereoisomers, and it may be that all the desired activity comes from a single enantiomer. We have previously shown this to be the case with the α7 nicotinic acetylcholine receptor positive allosteric modulator (PAM) 3a,4,5,9b-Tetrahydro-4-(1-naphthalenyl)-3H-cyclopentan[c]quinoline-8-sulfonamide (TQS) and the α7 ago-PAM 4BP-TQS. Cis-trans-4-(2,3,5,6-tetramethylphenyl)-3a,4,5,9b-te-trahydro-3H-cyclopenta[c]quinoline-8-sulfonamide (2,3,5,6TMP-TQS), previously published as a "silent allosteric modulator" and an antagonist of α7 allosteric activation, shares the same scaffold with three chiral centers as the aforementioned compounds. We isolated the enantiomers of 2,3,5,6TMP-TQS and determined that the (-) isomer was a significantly better antagonist than the (+) isomer of the allosteric activation of both wild-type α7 and the nonorthosterically activatible C190A α7 mutant by the ago-PAM GAT107 (the active isomer of 4BP-TQS). In contrast, (+)2,3,5,6TMP-TQS proved to be an α7 PAM. (-)2,3,5,6TMP-TQS was shown to antagonize the allosteric activation of α7 by the structurally unrelated ago-PAM B-973B as well as the allosteric activation of the TQS-sensitive α4β2L15'M mutant. In silico docking of 2,3,5,6TMP-TQS in the putative allosteric activation binding site suggested a specific interaction of the (-) enantiomer with α7T106, and allosteric activation of α7T106 mutants was not inhibited by (-)2,3,5,6TMP-TQS, confirming the importance of this interaction and supporting the model of the allosteric binding site. Comparisons and contrasts between 2,3,5,6TMP-TQS isomers and active and inactive enantiomers of other TQS-related compounds identify the orientation of the cyclopentenyl ring to the plane of the core quinoline to be a crucial determinate of PAM activity. SIGNIFICANCE STATEMENT: Many synthetic ligands are in use as racemic preparations. We show that one enantiomer of the TQS analog Cis-trans-4-(2,3,5,6-tetramethylphenyl)-3a,4,5,9b-te-trahydro-3H-cyclopenta[c]quinoline-8-sulfonamide, originally reported to lack activity when used as a racemic preparation, is an α7 nicotinic acetylcholine receptor positive allosteric modulator (PAM). The other enantiomer is not a PAM, but it is an effective allosteric antagonist. In silico studies and structural comparisons identify essential elements of both the allosteric ligands and receptor binding sites important for these allosteric activities.
Collapse
Affiliation(s)
- Roger L Papke
- Departments of Pharmacology and Therapeutics (R.L.P., C.S., A.D.Z.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| | - Sumanta Garai
- Departments of Pharmacology and Therapeutics (R.L.P., C.S., A.D.Z.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| | - Clare Stokes
- Departments of Pharmacology and Therapeutics (R.L.P., C.S., A.D.Z.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| | - Nicole A Horenstein
- Departments of Pharmacology and Therapeutics (R.L.P., C.S., A.D.Z.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| | - Arthur D Zimmerman
- Departments of Pharmacology and Therapeutics (R.L.P., C.S., A.D.Z.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| | - Khalil A Abboud
- Departments of Pharmacology and Therapeutics (R.L.P., C.S., A.D.Z.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| | - Ganesh A Thakur
- Departments of Pharmacology and Therapeutics (R.L.P., C.S., A.D.Z.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| |
Collapse
|
8
|
Xu C, Wei N, Zhu D, Wang M. Cyclopentene Synthesis by a Catalytic [3+2] Annulation of Donor‐Acceptor Cyclopropanes with Polarized Alkenes. ChemistrySelect 2020. [DOI: 10.1002/slct.202002967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Cong Xu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry Northeast Normal University 5268 Renmin Street Changchun, 130024 China
| | - Na Wei
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry Northeast Normal University 5268 Renmin Street Changchun, 130024 China
| | - Dongsheng Zhu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry Northeast Normal University 5268 Renmin Street Changchun, 130024 China
| | - Mang Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry Northeast Normal University 5268 Renmin Street Changchun, 130024 China
| |
Collapse
|
9
|
Stokes C, Garai S, Kulkarni AR, Cantwell LN, Noviello CM, Hibbs RE, Horenstein NA, Abboud KA, Thakur GA, Papke RL. Heteromeric Neuronal Nicotinic Acetylcholine Receptors with Mutant β Subunits Acquire Sensitivity to α7-Selective Positive Allosteric Modulators. J Pharmacol Exp Ther 2019; 370:252-268. [PMID: 31175218 PMCID: PMC6658922 DOI: 10.1124/jpet.119.259499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/04/2019] [Indexed: 01/29/2023] Open
Abstract
Homomeric α7 nicotinic acetylcholine receptors (nAChR) have an intrinsically low probability of opening that can be overcome by α7-selective positive allosteric modulators (PAMs), which bind at a site involving the second transmembrane domain (TM2). Mutation of a methionine that is unique to α7 at the 15' position of TM2 to leucine, the residue in most other nAChR subunits, largely eliminates the activity of such PAMs. We tested the effect of the reverse mutation (L15'M) in heteromeric nAChR receptors containing α4 and β2, which are the nAChR subunits that are most abundant in the brain. Receptors containing these mutations were found to be strongly potentiated by the α7 PAM 3a,4,5,9b-tetrahydro-4-(1-naphthalenyl)-3H-cyclopentan[c]quinoline-8-sulfonamide (TQS) but insensitive to the alternative PAM 1-(5-chloro-2,4-dimethoxyphenyl)-3-(5-methylisoxazol-3-yl)-urea. The presence of the mutation in the β2 subunit was necessary and sufficient for TQS sensitivity. The primary effect of the mutation in the α4 subunit was to reduce responses to acetylcholine applied alone. Sensitivity to TQS required only a single mutant β subunit, regardless of the position of the mutant β subunit within the pentameric complex. Similar results were obtained when β2L15'M was coexpressed with α2 or α3 and when the L15'M mutation was placed in β4 and coexpressed with α2, α3, or α4. Functional receptors were not observed when β1L15'M subunits were coexpressed with other muscle nAChR subunits. The unique structure-activity relationship of PAMs and the α4β2L15'M receptor compared with α7 and the availability of high-resolution α4β2 structures may provide new insights into the fundamental mechanisms of nAChR allosteric potentiation. SIGNIFICANCE STATEMENT: Heteromeric neuronal nAChRs have a relatively high initial probability of channel activation compared to receptors that are homomers of α7 subunits but are insensitive to PAMs, which greatly increase the open probability of α7 receptors. These features of heteromeric nAChR can be reversed by mutation of a single residue present in all neuronal heteromeric nAChR subunits to the sequence found in α7. Specifically, the mutation of the TM2 15' leucine to methionine in α subunits reduces heteromeric receptor channel activation, while the same mutation in neuronal β subunits allows heteromeric receptors to respond to select α7 PAMs. The results indicate a key role for this residue in the functional differences in the two main classes of neuronal nAChRs.
Collapse
Affiliation(s)
- Clare Stokes
- Departments of Pharmacology and Therapeutics (C.S., R.L.P.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., A.R.K., L.N.C., G.A.T.); and Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas (C.M.N., R.E.H.)
| | - Sumanta Garai
- Departments of Pharmacology and Therapeutics (C.S., R.L.P.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., A.R.K., L.N.C., G.A.T.); and Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas (C.M.N., R.E.H.)
| | - Abhijit R Kulkarni
- Departments of Pharmacology and Therapeutics (C.S., R.L.P.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., A.R.K., L.N.C., G.A.T.); and Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas (C.M.N., R.E.H.)
| | - Lucas N Cantwell
- Departments of Pharmacology and Therapeutics (C.S., R.L.P.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., A.R.K., L.N.C., G.A.T.); and Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas (C.M.N., R.E.H.)
| | - Colleen M Noviello
- Departments of Pharmacology and Therapeutics (C.S., R.L.P.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., A.R.K., L.N.C., G.A.T.); and Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas (C.M.N., R.E.H.)
| | - Ryan E Hibbs
- Departments of Pharmacology and Therapeutics (C.S., R.L.P.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., A.R.K., L.N.C., G.A.T.); and Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas (C.M.N., R.E.H.)
| | - Nicole A Horenstein
- Departments of Pharmacology and Therapeutics (C.S., R.L.P.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., A.R.K., L.N.C., G.A.T.); and Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas (C.M.N., R.E.H.)
| | - Khalil A Abboud
- Departments of Pharmacology and Therapeutics (C.S., R.L.P.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., A.R.K., L.N.C., G.A.T.); and Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas (C.M.N., R.E.H.)
| | - Ganesh A Thakur
- Departments of Pharmacology and Therapeutics (C.S., R.L.P.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., A.R.K., L.N.C., G.A.T.); and Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas (C.M.N., R.E.H.)
| | - Roger L Papke
- Departments of Pharmacology and Therapeutics (C.S., R.L.P.) and Chemistry (N.A.H., K.A.A.), University of Florida, Gainesville, Florida; Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., A.R.K., L.N.C., G.A.T.); and Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas (C.M.N., R.E.H.)
| |
Collapse
|
10
|
Gulsevin A, Papke RL, Stokes C, Garai S, Thakur GA, Quadri M, Horenstein NA. Allosteric Agonism of α7 Nicotinic Acetylcholine Receptors: Receptor Modulation Outside the Orthosteric Site. Mol Pharmacol 2019; 95:606-614. [PMID: 30944209 PMCID: PMC6491904 DOI: 10.1124/mol.119.115758] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/24/2019] [Indexed: 12/15/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are members of the Cys-loop superfamily of ligand-gated ion channels. Typically, channel activation follows the binding of agonists to the orthosteric binding sites of the receptor. α7 nAChRs have a very low probability of channel activation, which can be reversed by the binding of α7 selective positive allosteric modulators (PAMs) to putative sites within the transmembrane domains. Although typical PAMs, like PNU-120596, require coapplication of an orthosteric agonist to produce large channel activations, some, like GAT107 and B-973B [(S)-3-(3,4-difluorophenyl)-N-(1-(6-(4-(pyridin-2-yl)piperazin-1-yl)pyrazin-2-yl)ethyl)propanamide], are characterized as allosteric activating PAMs, which also bind to an allosteric activation (AA) site in the extracellular domain and activate the α7 ion channel by themselves. We had previously characterized N,N-diethyl-N'-phenylpiperazine analogs with various functions. In this work, we docked members of this family to a homology model of the α7 receptor extracellular domain. The compound 1,1-diethyl-4(naphthalene-2-yl)piperazin-1-ium (2NDEP) a weak partial agonist, showed particularly favorable docking and binding energies at the putative AA site of the receptor. We hypothesized that 2NDEP could couple with PAMs through the AA site. This hypothesis was tested with the α7 mutant C190A, which is not activated by orthosteric agonists but is effectively activated by GAT107. The results showed that 2NDEP acts as an allosteric agonist of α7C190A when coapplied with the PAM PNU-120596. Also, the allosteric activity was nearly abolished upon coapplication with the AA site-selective antagonist 2,3,5,6MP-TQS (cis-trans-4-(2,3,5,6-tetramethylphenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide), consistent with AA site involvement. Overall, our findings show a novel mode of agonism through an allosteric site in the extracellular domain of α7 nAChR.
Collapse
Affiliation(s)
- Alican Gulsevin
- Departments of Chemistry (A.G., M.Q., N.A.H.) and Pharmacology and Therapeutics (R.L.P, C.S., M.Q.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| | - Roger L Papke
- Departments of Chemistry (A.G., M.Q., N.A.H.) and Pharmacology and Therapeutics (R.L.P, C.S., M.Q.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| | - Clare Stokes
- Departments of Chemistry (A.G., M.Q., N.A.H.) and Pharmacology and Therapeutics (R.L.P, C.S., M.Q.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| | - Sumanta Garai
- Departments of Chemistry (A.G., M.Q., N.A.H.) and Pharmacology and Therapeutics (R.L.P, C.S., M.Q.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| | - Ganesh A Thakur
- Departments of Chemistry (A.G., M.Q., N.A.H.) and Pharmacology and Therapeutics (R.L.P, C.S., M.Q.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| | - Marta Quadri
- Departments of Chemistry (A.G., M.Q., N.A.H.) and Pharmacology and Therapeutics (R.L.P, C.S., M.Q.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| | - Nicole A Horenstein
- Departments of Chemistry (A.G., M.Q., N.A.H.) and Pharmacology and Therapeutics (R.L.P, C.S., M.Q.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| |
Collapse
|
11
|
Muthukrishnan I, Sridharan V, Menéndez JC. Progress in the Chemistry of Tetrahydroquinolines. Chem Rev 2019; 119:5057-5191. [PMID: 30963764 DOI: 10.1021/acs.chemrev.8b00567] [Citation(s) in RCA: 252] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tetrahydroquinoline is one of the most important simple nitrogen heterocycles, being widespread in nature and present in a broad variety of pharmacologically active compounds. This Review summarizes the progress achieved in the chemistry of tetrahydroquinolines, with emphasis on their synthesis, during the period from mid-2010 to early 2018.
Collapse
Affiliation(s)
- Isravel Muthukrishnan
- Department of Chemistry, School of Chemical and Biotechnology , SASTRA Deemed University , Thanjavur 613401 , Tamil Nadu , India
| | - Vellaisamy Sridharan
- Department of Chemistry, School of Chemical and Biotechnology , SASTRA Deemed University , Thanjavur 613401 , Tamil Nadu , India.,Department of Chemistry and Chemical Sciences , Central University of Jammu , Rahya-Suchani (Bagla) , District-Samba, Jammu 181143 , Jammu and Kashmir , India
| | - J Carlos Menéndez
- Unidad de Química Orgańica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia , Universidad Complutense , 28040 Madrid , Spain
| |
Collapse
|
12
|
Khaja Mohinuddin PM, Dada R, Almansour AI, Arumugam N, Yaragorla S. Ca(II)-catalyzed diastereoselective formal [4+2] annulation of a 3-component solvent-free povarov reaction. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
13
|
Quadri M, Garai S, Thakur GA, Stokes C, Gulsevin A, Horenstein NA, Papke RL. Macroscopic and Microscopic Activation of α7 Nicotinic Acetylcholine Receptors by the Structurally Unrelated Allosteric Agonist-Positive Allosteric Modulators (ago-PAMs) B-973B and GAT107. Mol Pharmacol 2019; 95:43-61. [PMID: 30348894 PMCID: PMC6277926 DOI: 10.1124/mol.118.113340] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/18/2018] [Indexed: 01/25/2023] Open
Abstract
B-973 is an efficacious type II positive allosteric modulator (PAM) of α7 nicotinic acetylcholine receptors that, like 4BP-TQS and its active isomer GAT107, can produce direct allosteric activation in addition to potentiation of orthosteric agonist activity, which identifies it as an allosteric activating (ago)-PAM. We compared the properties of B-973B, the active enantiomer of B-973, with those of GAT107 regarding the separation of allosteric potentiation and activation. Both ago-PAMs can strongly activate mutants of α7 that are insensitive to standard orthosteric agonists like acetylcholine. Likewise, the activity of both ago-PAMs is largely eliminated by the M254L mutation in the putative transmembrane PAM-binding site. Allosteric activation by B-973B appeared more protracted than that produced by GAT107, and B-973B responses were relatively insensitive to the noncompetitive antagonist mecamylamine compared with GAT107 responses. Similar differences are also seen in the single-channel currents. The two agents generate unique profiles of full-conductance and subconductance states, with B-973B producing protracted bursts, even in the presence of mecamylamine. Modeling and docking studies suggest that the molecular basis for these effects depends on specific interactions in both the extracellular and transmembrane domains of the receptor.
Collapse
Affiliation(s)
- Marta Quadri
- Departments of Pharmacology and Therapeutics (M.Q., C.S., R.L.P.) and Chemistry (M.Q., A.G., N.A.H.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| | - Sumanta Garai
- Departments of Pharmacology and Therapeutics (M.Q., C.S., R.L.P.) and Chemistry (M.Q., A.G., N.A.H.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| | - Ganesh A Thakur
- Departments of Pharmacology and Therapeutics (M.Q., C.S., R.L.P.) and Chemistry (M.Q., A.G., N.A.H.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| | - Clare Stokes
- Departments of Pharmacology and Therapeutics (M.Q., C.S., R.L.P.) and Chemistry (M.Q., A.G., N.A.H.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| | - Alican Gulsevin
- Departments of Pharmacology and Therapeutics (M.Q., C.S., R.L.P.) and Chemistry (M.Q., A.G., N.A.H.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| | - Nicole A Horenstein
- Departments of Pharmacology and Therapeutics (M.Q., C.S., R.L.P.) and Chemistry (M.Q., A.G., N.A.H.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| | - Roger L Papke
- Departments of Pharmacology and Therapeutics (M.Q., C.S., R.L.P.) and Chemistry (M.Q., A.G., N.A.H.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (S.G., G.A.T.)
| |
Collapse
|
14
|
Quadri M, Bagdas D, Toma W, Stokes C, Horenstein NA, Damaj MI, Papke RL. The Antinociceptive and Anti-Inflammatory Properties of the α7 nAChR Weak Partial Agonist p-CF 3 N, N-diethyl- N'-phenylpiperazine. J Pharmacol Exp Ther 2018; 367:203-214. [PMID: 30111636 PMCID: PMC7593094 DOI: 10.1124/jpet.118.249904] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022] Open
Abstract
Chronic pain and inflammatory diseases can be regulated by complex mechanisms involving α7 nicotinic acetylcholine receptors (nAChRs), making this subtype a promising drug target for anti-inflammatory therapies. Recent evidence suggests that suchtreatment of inflammatory pain may rely on metabotropic-like rather than ionotropic activation of the α7 receptor subtype in non-neuronal cells. We previously identified para-trifluoromethyl (p-CF3) N,N-diethyl-N'-phenylpiperazinium (diEPP) iodide to be among the compounds classified as silent agonists, which are very weak α7 partial agonists that are able to induce positive allosteric modulator (PAM)-sensitive desensitization. Such drugs have been shown to selectively promote α7 ionotropic-independent functions. Therefore, we here further investigated the electrophysiological profile of p-CF3 diEPP and its in vivo antinociceptive activity using Xenopus oocytes expressing α7, α4β2, or α3β4 nAChRs. The evoked currents confirmed p-CF3 diEPP to be α7-selective with a maximal agonism 5% that of acetylcholine (ACh). Coapplication of p-CF3 diEPP with the type II PAM 4-naphthalene-1-yl-3a,4,5,9b-tetrahydro-3-H-cyclopenta[c]quinoline-8-sulfonic acid amide (TQS) produced desensitization that could be converted to PAM-potentiated currents, which at a negative holding potential were up to 13-fold greater than ACh controls. Voltage-dependence experiments indicated that channel block may limit both control ACh and TQS-potentiated responses. Although no p-CF3 diEPP agonist activity was detected for the heteromeric nAChRs, it was a noncompetitive antagonist of these receptors. The compound displayed remarkable antihyperalgesic and antiedema effects in in vivo assays. The antinociceptive activity was dose and time dependent. The anti-inflammatory components were sensitive to the α7-selective antagonist methyllycaconitine, which supports the idea that these effects are mediated by the α7 nAChR.
Collapse
Affiliation(s)
- Marta Quadri
- Departments of Pharmacology and Therapeutics (M.Q., C.S., R.L.P.) and Chemistry (M.Q., N.A.H.), University of Florida, Gainesville, Florida; and Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., M.I.D.)
| | - Deniz Bagdas
- Departments of Pharmacology and Therapeutics (M.Q., C.S., R.L.P.) and Chemistry (M.Q., N.A.H.), University of Florida, Gainesville, Florida; and Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., M.I.D.)
| | - Wisam Toma
- Departments of Pharmacology and Therapeutics (M.Q., C.S., R.L.P.) and Chemistry (M.Q., N.A.H.), University of Florida, Gainesville, Florida; and Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., M.I.D.)
| | - Clare Stokes
- Departments of Pharmacology and Therapeutics (M.Q., C.S., R.L.P.) and Chemistry (M.Q., N.A.H.), University of Florida, Gainesville, Florida; and Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., M.I.D.)
| | - Nicole A Horenstein
- Departments of Pharmacology and Therapeutics (M.Q., C.S., R.L.P.) and Chemistry (M.Q., N.A.H.), University of Florida, Gainesville, Florida; and Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., M.I.D.)
| | - M Imad Damaj
- Departments of Pharmacology and Therapeutics (M.Q., C.S., R.L.P.) and Chemistry (M.Q., N.A.H.), University of Florida, Gainesville, Florida; and Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., M.I.D.)
| | - Roger L Papke
- Departments of Pharmacology and Therapeutics (M.Q., C.S., R.L.P.) and Chemistry (M.Q., N.A.H.), University of Florida, Gainesville, Florida; and Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., M.I.D.)
| |
Collapse
|
15
|
Zeng Y, Huang C, Ni P, Liu L, Xiao Y, Zhang J. Silver-Catalyzed Double Hydrocarbonation of 2-Trifluoromethyl-1,3-Conjugated Enynes with 1,3-Dicarbonyl Compounds: Synthesis of Ring-Trifluoromethylated Cyclopentene. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700752] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yu Zeng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; 3663 N. Zhongshan Road Shanghai 200062 People's Republic of China
| | - Chaoqian Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; 3663 N. Zhongshan Road Shanghai 200062 People's Republic of China
| | - Peiyun Ni
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; 3663 N. Zhongshan Road Shanghai 200062 People's Republic of China
| | - Lu Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; 3663 N. Zhongshan Road Shanghai 200062 People's Republic of China
| | - Yuanjing Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; 3663 N. Zhongshan Road Shanghai 200062 People's Republic of China
| | - Junliang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; 3663 N. Zhongshan Road Shanghai 200062 People's Republic of China
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry, CAS.; 345 Lingling Road Shanghai 200032 People's Republic of China
| |
Collapse
|
16
|
Laprairie RB, Kulkarni PM, Deschamps JR, Kelly MEM, Janero DR, Cascio MG, Stevenson LA, Pertwee RG, Kenakin TP, Denovan-Wright EM, Thakur GA. Enantiospecific Allosteric Modulation of Cannabinoid 1 Receptor. ACS Chem Neurosci 2017; 8:1188-1203. [PMID: 28103441 DOI: 10.1021/acschemneuro.6b00310] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The cannabinoid 1 receptor (CB1R) is one of the most widely expressed metabotropic G protein-coupled receptors in brain, and its participation in various (patho)physiological processes has made CB1R activation a viable therapeutic modality. Adverse psychotropic effects limit the clinical utility of CB1R orthosteric agonists and have promoted the search for CB1R positive allosteric modulators (PAMs) with the promise of improved drug-like pharmacology and enhanced safety over typical CB1R agonists. In this study, we describe the synthesis and in vitro and ex vivo pharmacology of the novel allosteric CB1R modulator GAT211 (racemic) and its resolved enantiomers, GAT228 (R) and GAT229 (S). GAT211 engages CB1R allosteric site(s), enhances the binding of the orthosteric full agonist [3H]CP55,490, and reduces the binding of the orthosteric antagonist/inverse agonist [3H]SR141716A. GAT211 displayed both PAM and agonist activity in HEK293A and Neuro2a cells expressing human recombinant CB1R (hCB1R) and in mouse-brain membranes rich in native CB1R. GAT211 also exhibited a strong PAM effect in isolated vas deferens endogenously expressing CB1R. Each resolved and crystallized GAT211 enantiomer showed a markedly distinctive pharmacology as a CB1R allosteric modulator. In all biological systems examined, GAT211's allosteric agonist activity resided with the R-(+)-enantiomer (GAT228), whereas its PAM activity resided with the S-(-)-enantiomer (GAT229), which lacked intrinsic activity. These results constitute the first demonstration of enantiomer-selective CB1R positive allosteric modulation and set a precedent whereby enantiomeric resolution can decisively define the molecular pharmacology of a CB1R allosteric ligand.
Collapse
Affiliation(s)
| | - Pushkar M. Kulkarni
- Department
of Pharmaceutical Sciences, School of Pharmacy, Bouvé College
of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jeffrey R. Deschamps
- Naval Research Laboratory, Code 6930, 4555 Overlook Avenue, Washington, D.C. 20375, United States
| | | | - David R. Janero
- Center
for Drug Discovery; Department of Pharmaceutical Sciences, School
of Pharmacy, Bouvé College of Health Sciences, Department of Chemistry and Chemical Biology, College of Science, and Health Sciences Entrepreneurs; Northeastern University, Boston, Massachusetts 02115, United States
| | - Maria G. Cascio
- School
of Medicine, Medical Sciences and Nutrition, Institute of Medical
Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, U.K
| | - Lesley A. Stevenson
- School
of Medicine, Medical Sciences and Nutrition, Institute of Medical
Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, U.K
| | - Roger G. Pertwee
- School
of Medicine, Medical Sciences and Nutrition, Institute of Medical
Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, U.K
| | - Terrence P. Kenakin
- Department
of Pharmacology, University of North Carolina School of Medicine, Chapel
Hill, North Carolina 27599, United States
| | | | - Ganesh A. Thakur
- Department
of Pharmaceutical Sciences, School of Pharmacy, Bouvé College
of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
17
|
The interaction between alpha 7 nicotinic acetylcholine receptor and nuclear peroxisome proliferator-activated receptor-α represents a new antinociceptive signaling pathway in mice. Exp Neurol 2017; 295:194-201. [PMID: 28606623 DOI: 10.1016/j.expneurol.2017.06.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 05/16/2017] [Accepted: 06/08/2017] [Indexed: 12/24/2022]
Abstract
Recently, α7 nicotinic acetylcholine receptors (nAChRs), primarily activated by binding of orthosteric agonists, represent a target for anti-inflammatory and analgesic drug development. These receptors may also be modulated by positive allosteric modulators (PAMs), ago-allosteric ligands (ago-PAMs), and α7-silent agonists. Activation of α7 nAChRs has been reported to increase the brain levels of endogenous ligands for nuclear peroxisome proliferator-activated receptors type-α (PPAR-α), palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), in a Ca2+-dependent manner. Here, we investigated potential crosstalk between α7 nAChR and PPAR-α, using the formalin test, a mouse model of tonic pain. Using pharmacological and genetic approaches, we found that PNU282987, a full α7 agonist, attenuated formalin-induced nociceptive behavior in α7-dependent manner. Interestingly, the selective PPAR-α antagonist GW6471 blocked the antinociceptive effects of PNU282987, but did not alter the antinociceptive responses evoked by the α7 nAChR PAM PNU120596, ago-PAM GAT107, and silent agonist NS6740. Moreover, GW6471 administered systemically or spinally, but not via the intraplantar surface of the formalin-injected paw blocked PNU282987-induced antinociception. Conversely, exogenous administration of the naturally occurring PPAR-α agonist PEA potentiated the antinociceptive effects of PNU282987. In contrast, the cannabinoid CB1 antagonist rimonabant and the CB2 antagonist SR144528 failed to reverse the antinociceptive effects of PNU282987. These findings suggest that PPAR-α plays a key role in a putative antinociceptive α7 nicotinic signaling pathway.
Collapse
|
18
|
Papke RL, Stokes C, Damaj MI, Thakur GA, Manther K, Treinin M, Bagdas D, Kulkarni AR, Horenstein NA. Persistent activation of α7 nicotinic ACh receptors associated with stable induction of different desensitized states. Br J Pharmacol 2017; 175:1838-1854. [PMID: 28477386 DOI: 10.1111/bph.13851] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/25/2017] [Accepted: 05/03/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE GAT107 ((3aR,4S,9bS)-4-(4-bromo-phenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta-[c]quinoline-8-sulfonamide) is a positive allosteric modulator (PAM) and agonist of α7 nicotinic acetylcholine receptors (nAChRs)that can cause a prolonged period of primed potentiation of acetylcholine responses after drug washout. NS6740 is a silent agonist of α7 nAChRs that has little or no efficacy for activating the ion channel but induces stable desensitization states, some of which can be converted into channel-active states by PAMs. Although GAT107 and NS6740 appear to stably induce different non-conducting states, both agents are effective treatment for inflammation and inflammatory pain models. We sought to better understand how both of these drugs that have opposite effects on channel activation could regulate signal transduction. EXPERIMENTAL APPROACH Voltage-clamp experiments were conducted with α7 nAChRs expressed in Xenopus oocytes. KEY RESULTS Long-lived sensitivity to a PAM or to an agonist was produced by NS6740 or GAT107 respectively. With sequential applications, these two drugs induced varying levels of persistent activation, which is a unique condition for a receptor that is known for rapid desensitization. The non-conducting states induced by NS6740 or GAT107 differ in their sensitivity to an α7 nAChR-selective antagonist and in how effectively they promote current. CONCLUSIONS & IMPLICATIONS Our data suggest that the persistent currents represent a dynamic interconversion between different stable desensitized states and the PAM-inducible conducting states. However, the similarity of NS6740 and GAT107 effects on inflammation and pain suggests that the different stable non-conducting states have common activity on signal transduction. LINKED ARTICLES This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc.
Collapse
Affiliation(s)
- Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Clare Stokes
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Khan Manther
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Millet Treinin
- Department of Medical Neurobiology, Hadassah Medical School, Hebrew University, Jerusalem, Israel
| | - Deniz Bagdas
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA.,Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Abhijit R Kulkarni
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | | |
Collapse
|
19
|
Olazarán FE, García-Pérez CA, Bandyopadhyay D, Balderas-Rentería I, Reyes-Figueroa AD, Henschke L, Rivera G. Theoretical and experimental study of polycyclic aromatic compounds as β-tubulin inhibitors. J Mol Model 2017; 23:85. [PMID: 28214932 DOI: 10.1007/s00894-017-3256-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/23/2017] [Indexed: 12/14/2022]
Abstract
In this work, through a docking analysis of compounds from the ZINC chemical library on human β-tubulin using high performance computer cluster, we report new polycyclic aromatic compounds that bind with high energy on the colchicine binding site of β-tubulin, suggesting three new key amino acids. However, molecular dynamic analysis showed low stability in the interaction between ligand and receptor. Results were confirmed experimentally in in vitro and in vivo models that suggest that molecular dynamics simulation is the best option to find new potential β-tubulin inhibitors. Graphical abstract Bennett's acceptance ratio (BAR) method.
Collapse
Affiliation(s)
- Fabian E Olazarán
- Facultad de Ciencias Químicas. Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, 64451, México
| | - Carlos A García-Pérez
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Boulevard del Maestro, s/n, Esq. Elías Piña, Reynosa, Tamualipas, Mexico, 88710
| | - Debasish Bandyopadhyay
- Department of Chemistry, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX, 78539, USA
| | - Isaias Balderas-Rentería
- Facultad de Ciencias Químicas. Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, 64451, México
| | - Angel D Reyes-Figueroa
- Centro de Investigación y de Estudios Avanzados del Instituto Politecnico Nacional, Unidad Monterrey, Apodaca, Nuevo León, 66600, México
| | - Lars Henschke
- Department of Biology, University of Konstanz, Universitätsstraβe 10, 78457, Konstanz, Germany
| | - Gildardo Rivera
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Boulevard del Maestro, s/n, Esq. Elías Piña, Reynosa, Tamualipas, Mexico, 88710.
| |
Collapse
|
20
|
Liberto NA, Simões JB, de Paiva Silva S, da Silva CJ, Modolo LV, de Fátima Â, Silva LM, Derita M, Zacchino S, Zuñiga OMP, Romanelli GP, Fernandes SA. Quinolines: Microwave-assisted synthesis and their antifungal, anticancer and radical scavenger properties. Bioorg Med Chem 2017; 25:1153-1162. [DOI: 10.1016/j.bmc.2016.12.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/12/2016] [Accepted: 12/19/2016] [Indexed: 01/09/2023]
|
21
|
Kulkarni AR, Garai S, Thakur GA. Scalable, One-Pot, Microwave-Accelerated Tandem Synthesis of Unsymmetrical Urea Derivatives. J Org Chem 2016; 82:992-999. [PMID: 27966953 DOI: 10.1021/acs.joc.6b02521] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We report a facile, microwave-accelerated, one-pot tandem synthesis of unsymmetrical ureas via a Curtius rearrangement. In this method, one-pot microwave irradiation of commercially available (hetero)aromatic acids and amines in the presence of diphenylphosphoryl azide enabled extremely rapid (1-5 min) construction of an array of unsymmetrical ureas in good to excellent yields. We demonstrate the utility of our method in the efficient, gram-scale synthesis of key biologically active compounds targeting the cannabinoid 1 and α7 nicotinic acetylcholine receptors.
Collapse
Affiliation(s)
- Abhijit R Kulkarni
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University , 140 The Fenway, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Sumanta Garai
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University , 140 The Fenway, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University , 140 The Fenway, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
22
|
Christodoulou MS, Caporuscio F, Restelli V, Carlino L, Cannazza G, Costanzi E, Citti C, Lo Presti L, Pisani P, Battistutta R, Broggini M, Passarella D, Rastelli G. Probing an Allosteric Pocket of CDK2 with Small Molecules. ChemMedChem 2016; 12:33-41. [DOI: 10.1002/cmdc.201600474] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/16/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Michael S. Christodoulou
- Dipartimento di Scienze della Vita; Università degli Studi di Modena e Reggio Emilia; Via Campi 103 41125 Modena Italy
- Dipartimento di Chimica; Università degli Studi di Milano; Via Golgi 19 20133 Milano Italy
| | - Fabiana Caporuscio
- Dipartimento di Scienze della Vita; Università degli Studi di Modena e Reggio Emilia; Via Campi 103 41125 Modena Italy
| | - Valentina Restelli
- Istituto di Ricerche Farmacologiche Mario Negri; Via La Masa 19 20156 Milano Italy
| | - Luca Carlino
- Dipartimento di Scienze della Vita; Università degli Studi di Modena e Reggio Emilia; Via Campi 103 41125 Modena Italy
| | - Giuseppe Cannazza
- Dipartimento di Scienze della Vita; Università degli Studi di Modena e Reggio Emilia; Via Campi 103 41125 Modena Italy
| | - Elisa Costanzi
- Dipartimento di Scienze Chimiche; Università degli Studi di Padova; Via Marzolo 1 35131 Padova Italy
| | - Cinzia Citti
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali; Università del Salento; Via per Monteroni 73100 Lecce Italy
| | - Leonardo Lo Presti
- Dipartimento di Chimica; Università degli Studi di Milano; Via Golgi 19 20133 Milano Italy
| | - Pasquale Pisani
- Dipartimento di Scienze della Vita; Università degli Studi di Modena e Reggio Emilia; Via Campi 103 41125 Modena Italy
| | - Roberto Battistutta
- Dipartimento di Scienze Chimiche; Università degli Studi di Padova; Via Marzolo 1 35131 Padova Italy
| | - Massimo Broggini
- Istituto di Ricerche Farmacologiche Mario Negri; Via La Masa 19 20156 Milano Italy
| | - Daniele Passarella
- Dipartimento di Chimica; Università degli Studi di Milano; Via Golgi 19 20133 Milano Italy
| | - Giulio Rastelli
- Dipartimento di Scienze della Vita; Università degli Studi di Modena e Reggio Emilia; Via Campi 103 41125 Modena Italy
| |
Collapse
|
23
|
Bagdas D, Wilkerson JL, Kulkarni A, Toma W, AlSharari S, Gul Z, Lichtman AH, Papke RL, Thakur GA, Damaj MI. The α7 nicotinic receptor dual allosteric agonist and positive allosteric modulator GAT107 reverses nociception in mouse models of inflammatory and neuropathic pain. Br J Pharmacol 2016; 173:2506-20. [PMID: 27243753 DOI: 10.1111/bph.13528] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 05/05/2016] [Accepted: 05/17/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Orthosteric agonists and positive allosteric modulators (PAMs) of the α7 nicotinic ACh receptor (nAChR) represent novel therapeutic approaches for pain modulation. Moreover, compounds with dual function as allosteric agonists and PAMs, known as ago-PAMs, add further regulation of receptor function. EXPERIMENTAL APPROACH Initial studies examined the α7 ago-PAM, GAT107, in the formalin, complete Freund's adjuvant (CFA), LPS inflammatory pain models, the chronic constriction injury neuropathic pain model and the tail flick and hot plate acute thermal nociceptive assays. Additional studies examined the locus of action of GAT107 and immunohistochemical markers in the dorsal horn of the spinal cord in the CFA model. KEY RESULTS Complementary pharmacological and genetic approaches confirmed that the dose-dependent antinociceptive effects of GAT107 were mediated through α7 nAChR. However, GAT107 was inactive in the tail flick and hot plate assays. In addition, GAT107 blocked conditioned place aversion elicited by acetic acid injection. Furthermore, intrathecal, but not intraplantar, injections of GAT107 reversed nociception in the CFA model, suggesting a spinal component of action. Immunohistochemical evaluation revealed an increase in the expression of astrocyte-specific glial fibrillary acidic protein and phosphorylated p38MAPK within the spinal cords of mice treated with CFA, which was attenuated by intrathecal GAT107 treatment. Importantly, GAT107 did not elicit motor impairment and continued to produce antinociceptive effects after subchronic administration in both phases of the formalin test. CONCLUSIONS AND IMPLICATIONS Collectively, these results provide the first proof of principle that α7 ago-PAMs represent an effective pharmacological strategy for treating inflammatory and neuropathic pain.
Collapse
Affiliation(s)
- Deniz Bagdas
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA.,Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Jenny L Wilkerson
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Abhijit Kulkarni
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Wisam Toma
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Shakir AlSharari
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA.,Department of Pharmacology and Toxicology, King Saud University, Riyadh, Saudi Arabia
| | - Zulfiye Gul
- Department of Pharmacology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
24
|
Horenstein NA, Papke RL, Kulkarni AR, Chaturbhuj GU, Stokes C, Manther K, Thakur GA. Critical Molecular Determinants of α7 Nicotinic Acetylcholine Receptor Allosteric Activation: SEPARATION OF DIRECT ALLOSTERIC ACTIVATION AND POSITIVE ALLOSTERIC MODULATION. J Biol Chem 2016; 291:5049-67. [PMID: 26742843 DOI: 10.1074/jbc.m115.692392] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Indexed: 01/08/2023] Open
Abstract
The α7 nicotinic acetylcholine receptors (nAChRs) are uniquely sensitive to selective positive allosteric modulators (PAMs), which increase the efficiency of channel activation to a level greater than that of other nAChRs. Although PAMs must work in concert with "orthosteric" agonists, compounds such as GAT107 ((3aR,4S,9bS)-4-(4-bromophenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide) have the combined properties of agonists and PAMs (ago-PAM) and produce very effective channel activation (direct allosteric activation (DAA)) by operating at two distinct sites in the absence of added agonist. One site is likely to be the same transmembrane site where PAMs like PNU-120596 function. We show that the other site, required for direct activation, is likely to be solvent-accessible at the extracellular domain vestibule. We identify key attributes of molecules in this family that are able to act at the DAA site through variation at the aryl ring substituent of the tetrahydroquinoline ring system and with two different classes of competitive antagonists of DAA. Analyses of molecular features of effective allosteric agonists allow us to propose a binding model for the DAA site, featuring a largely non-polar pocket accessed from the extracellular vestibule with an important role for Asp-101. This hypothesis is supported with data from site-directed mutants. Future refinement of the model and the characterization of specific GAT107 analogs will allow us to define critical structural elements that can be mapped onto the receptor surface for an improved understanding of this novel way to target α7 nAChR therapeutically.
Collapse
Affiliation(s)
- Nicole A Horenstein
- From the Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200
| | - Roger L Papke
- the Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida 32610-0267, and
| | - Abhijit R Kulkarni
- the Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115
| | - Ganesh U Chaturbhuj
- the Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115
| | - Clare Stokes
- the Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida 32610-0267, and
| | - Khan Manther
- the Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida 32610-0267, and
| | - Ganesh A Thakur
- the Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115
| |
Collapse
|
25
|
Ma X, Zhang M, Wang B, Min F. Microwave-Assisted Synthesis of β-Thiodiketone Compounds by Multicomponent Reaction. PHOSPHORUS SULFUR 2015. [DOI: 10.1080/10426507.2014.974091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Xiangmei Ma
- Department of Chemical Engineering, Institute of Chemical Engineering, Anhui University of Science & Technology, Huainan, 232001, Anhui, P.R. China
- Institute of Earth & Environment, Anhui University of Science & Technology, Huainan, 232001, Anhui, P.R. China
| | - Mingxu Zhang
- Institute of Earth & Environment, Anhui University of Science & Technology, Huainan, 232001, Anhui, P.R. China
| | - Bin Wang
- Department of Chemical Engineering, Institute of Chemical Engineering, Anhui University of Science & Technology, Huainan, 232001, Anhui, P.R. China
| | - Fanfei Min
- Institute of Earth & Environment, Anhui University of Science & Technology, Huainan, 232001, Anhui, P.R. China
| |
Collapse
|
26
|
Papke RL, Horenstein NA, Kulkarni AR, Stokes C, Corrie LW, Maeng CY, Thakur GA. The activity of GAT107, an allosteric activator and positive modulator of α7 nicotinic acetylcholine receptors (nAChR), is regulated by aromatic amino acids that span the subunit interface. J Biol Chem 2013; 289:4515-31. [PMID: 24362025 DOI: 10.1074/jbc.m113.524603] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GAT107, the (+)-enantiomer of racemic 4-(4-bromophenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide, is a strong positive allosteric modulator (PAM) of α7 nicotinic acetylcholine receptor (nAChR) activation by orthosteric agonists with intrinsic allosteric agonist activities. The direct activation produced by GAT107 in electrophysiological studies is observed only as long as GAT107 is freely diffusible in solution, although the potentiating activity primed by GAT107 can persist for over 30 min after drug washout. Direct activation is sensitive to α7 nAChR antagonist methyllycaconitine, although the primed potentiation is not. The data are consistent with GAT107 activity arising from two different sites. We show that the coupling between PAMs and the binding of orthosteric ligands requires tryptophan 55 (Trp-55), which is located at the subunit interface on the complementary surface of the orthosteric binding site. Mutations of Trp-55 increase the direct activation produced by GAT107 and reduce or prevent the synergy between allosteric and orthosteric binding sites, so that these mutants can also be directly activated by other PAMs such as PNU-120596 and TQS, which do not activate wild-type α7 in the absence of orthosteric agonists. We identify Tyr-93 as an essential element for orthosteric activation, because Y93C mutants are insensitive to orthosteric agonists but respond to GAT107. Our data show that both orthosteric and allosteric activation of α7 nAChR require cooperative activity at the interface between the subunits in the extracellular domain. These cooperative effects rely on key aromatic residues, and although mutations of Trp-55 reduce the restraints placed on the requirement for orthosteric agonists, Tyr-93 can conduct both orthosteric activation and desensitization among the subunits.
Collapse
Affiliation(s)
- Roger L Papke
- From the Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida 32610
| | | | | | | | | | | | | |
Collapse
|
27
|
Thakur GA, Kulkarni AR, Deschamps JR, Papke RL. Expeditious synthesis, enantiomeric resolution, and enantiomer functional characterization of (4-(4-bromophenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide (4BP-TQS): an allosteric agonist-positive allosteric modulator of α7 nicotinic acetylcholine receptors. J Med Chem 2013; 56:8943-7. [PMID: 24090443 DOI: 10.1021/jm401267t] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An expeditious microwave-assisted synthesis of 4BP-TQS, its enantiomeric separation, and their functional evaluation is reported. Electrophysiological characterization in Xenopus oocytes revealed that activity exclusively resided in the (+)-enantiomer 1b (GAT107) and (-)-enantiomer 1a did not affect its activity when coapplied. X-ray crystallography studies revealed the absolute stereochemistry of 1b to be 3aR,4S,9bS. 1b represents the most potent ago-PAM of α7 nAChRs available to date and is considered for further in vivo evaluation.
Collapse
Affiliation(s)
- Ganesh A Thakur
- Department of Pharmaceutical Sciences, Bouvé College of Pharmacy, Northeastern University , 140 The Fenway, 360 Huntington Avenue, Boston, Massachusetts, 02115, United States
| | | | | | | |
Collapse
|