1
|
Chen A, Han Y, Wu R, Yang B, Zhu L, Zhu F. Palladium-catalyzed Suzuki-Miyaura cross-couplings of stable glycal boronates for robust synthesis of C-1 glycals. Nat Commun 2024; 15:5228. [PMID: 38898022 PMCID: PMC11187158 DOI: 10.1038/s41467-024-49547-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
C-1 Glycals serve as pivotal intermediates in synthesizing diverse C-glycosyl compounds and natural products, necessitating the development of concise, efficient and user-friendly methods to obtain C-1 glycosides is essential. The Suzuki-Miyaura cross-coupling of glycal boronates is notable for its reliability and non-toxic nature, but glycal donor stability remains a challenge. Herein, we achieve a significant breakthrough by developing stable glycal boronates, effectively overcoming the stability issue in glycal-based Suzuki-Miyaura coupling. Leveraging the balanced reactivity and stability of our glycal boronates, we establish a robust palladium-catalyzed glycal-based Suzuki-Miyaura reaction, facilitating the formation of various C(sp2)-C(sp), C(sp2)-C(sp2), and C(sp2)-C(sp3) bonds under mild conditions. Notably, we expand upon this achievement by developing the DNA-compatible glycal-based cross-coupling reaction to synthesize various glycal-DNA conjugates. With its excellent reaction reactivity, stability, generality, and ease of handling, the method holds promise for widespread appication in the preparation of C-glycosyl compounds and natural products.
Collapse
Grants
- We are grateful for financial support from the National Key R&D Program of China (Grant No. 2023YFA1508800, F. Z.), National Science Foundation (Grant No. 22301178, F. Z.), Shanghai Pilot Program for Basic Research - Shanghai Jiao Tong University (Grant No. 21TQ1400210, F. Z.), Fundamental Research Funds for the Central Universities (Grant No. 22X010201631, F. Z.), the Open Grant from the Pingyuan Laboratory (Grant No. 2023PY-OP-0102, F. Z.), Natural Science Foundation of Shanghai (Grant No. 21ZR1435600, F. Z.), Shanghai Sailing Program (Grant No 21YF1420600, F. Z.). Part of this study was supported by the National Science Foundation (Grant No. 22301180, B. Y.).
Collapse
Affiliation(s)
- Anrong Chen
- Frontiers Science Center for Transformative Molecules, Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yang Han
- Frontiers Science Center for Transformative Molecules, Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, PR China
| | - Rongfeng Wu
- Discovery Chemistry Unit, HitGen Inc., Chengdu, Sichuan, PR China
| | - Bo Yang
- Frontiers Science Center for Transformative Molecules, Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, PR China
| | - Lijuan Zhu
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, PR China.
| | - Feng Zhu
- Frontiers Science Center for Transformative Molecules, Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
2
|
Bennett JJ, Murphy PV. Flow Chemistry for Synthesis of 2-(C-Glycosyl)acetates from Pyranoses via Tandem Wittig and Michael Reactions. Org Process Res Dev 2024; 28:1848-1859. [PMID: 38783857 PMCID: PMC11110061 DOI: 10.1021/acs.oprd.3c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 05/25/2024]
Abstract
C-Glycosyl compounds (C-glycosides) are a class of saccharide derivatives with improved stability over their O-linked counterparts. This paper reports the synthesis of several trans-2-(C-glycosyl)acetates via a tandem Wittig-Michael reaction from pyranoses (cyclic hemiacetals) using continuous flow processing, which gave improvements compared to reactions conducted in round-bottom flasks. Products were isolated in yields of >60% from reactions of benzyl-protected xylopyranoses, glucopyranoses, and galactopyranoses at higher temperatures and pressures, which were superior to yields from batch procedures. A two-step procedure involving the Wittig reaction followed by Michael reaction (intramolecular oxa-Michael) of the unsaturated ester obtained in the presence of DBU was developed. Reactions of protected mannopyranose gave low yields in corresponding reactions in flow due to competing C-2 epimerization.
Collapse
Affiliation(s)
- Jack J. Bennett
- School
of Biological and Chemical Sciences, University
of Galway, University Road, Galway H91 TK33, Ireland
| | - Paul V. Murphy
- School
of Biological and Chemical Sciences, University
of Galway, University Road, Galway H91 TK33, Ireland
- SSPC
− SFI Research Centre for Pharmaceuticals, University of Galway, University Road, Galway H91 TK33, Ireland
| |
Collapse
|
3
|
Oeser P, Tobrman T. Organophosphates as Versatile Substrates in Organic Synthesis. Molecules 2024; 29:1593. [PMID: 38611872 PMCID: PMC11154425 DOI: 10.3390/molecules29071593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
This review summarizes the applications of organophosphates in organic synthesis. After a brief introduction, it discusses cross-coupling reactions, including both transition-metal-catalyzed and transition-metal-free substitution reactions. Subsequently, oxidation and reduction reactions are described. In addition, this review highlights the applications of organophosphates in the synthesis of natural compounds, demonstrating their versatility and importance in modern synthetic chemistry.
Collapse
Affiliation(s)
| | - Tomáš Tobrman
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic;
| |
Collapse
|
4
|
Synergistic Pd/Cu catalysis enabled cross-coupling of glycosyl stannanes with sulfonium salts to access C-aryl/alkenyl glycals. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Taheri Kal Koshvandi A, Heravi MM, Momeni T. Current Applications of Suzuki–Miyaura Coupling Reaction in The Total Synthesis of Natural Products: An update. Appl Organomet Chem 2018. [DOI: 10.10.1002/aoc.4210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Tayebeh Momeni
- Department of ChemistryAlzahra University Vanak Tehran Iran
| |
Collapse
|
6
|
Taheri Kal Koshvandi A, Heravi MM, Momeni T. Current Applications of Suzuki–Miyaura Coupling Reaction in The Total Synthesis of Natural Products: An update. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4210] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | | | - Tayebeh Momeni
- Department of ChemistryAlzahra University Vanak Tehran Iran
| |
Collapse
|
7
|
Kitamura K, Ando Y, Matsumoto T, Suzuki K. Total Synthesis of Aryl C-Glycoside Natural Products: Strategies and Tactics. Chem Rev 2017; 118:1495-1598. [DOI: 10.1021/acs.chemrev.7b00380] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kei Kitamura
- Department
of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Yoshio Ando
- Department
of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Takashi Matsumoto
- School
of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1
Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Keisuke Suzuki
- Department
of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
8
|
Chen YB, Liu SH, Hsieh MT, Chang CS, Lin CH, Chen CY, Chen PY, Lin HC. Stereoselective Synthesis of Spiro Bis-C,C-α-arylglycosides by Tandem Heck Type C-Glycosylation and Friedel–Crafts Cyclization. J Org Chem 2016; 81:3007-16. [DOI: 10.1021/acs.joc.5b02891] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yen-Bo Chen
- School
of Pharmacy, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402, Taiwan
- Graduate
Institute of Pharmaceutical Chemistry, China Medical University, No.
91, Hsueh-Shih Road, Taichung, 40402, Taiwan
| | - Shi-Hao Liu
- Graduate
Institute of Pharmaceutical Chemistry, China Medical University, No.
91, Hsueh-Shih Road, Taichung, 40402, Taiwan
| | - Min-Tsang Hsieh
- School
of Pharmacy, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402, Taiwan
- Chinese
Medicinal Research and Development Center, China Medical University Hospital, No. 2, Yude Road, Taichung, 40447, Taiwan
| | - Chih-Shiang Chang
- School
of Pharmacy, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402, Taiwan
- Graduate
Institute of Pharmaceutical Chemistry, China Medical University, No.
91, Hsueh-Shih Road, Taichung, 40402, Taiwan
| | - Chun-Hung Lin
- Institute
of Biological Chemistry, Academia Sinica, No. 128, Academia Road, Section
2, Nan-Kang, Taipei, 11529, Taiwan
| | - Chen-Yin Chen
- School
of Pharmacy, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402, Taiwan
- Graduate
Institute of Pharmaceutical Chemistry, China Medical University, No.
91, Hsueh-Shih Road, Taichung, 40402, Taiwan
| | - Po-Yen Chen
- School
of Pharmacy, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402, Taiwan
- Graduate
Institute of Pharmaceutical Chemistry, China Medical University, No.
91, Hsueh-Shih Road, Taichung, 40402, Taiwan
| | - Hui-Chang Lin
- School
of Pharmacy, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402, Taiwan
- Graduate
Institute of Pharmaceutical Chemistry, China Medical University, No.
91, Hsueh-Shih Road, Taichung, 40402, Taiwan
| |
Collapse
|
9
|
Kotek V, Polák P, Tobrman T. Efficient and simple preparation of functionalized 1,1-dibromoenol phosphates. MONATSHEFTE FUR CHEMIE 2015. [DOI: 10.1007/s00706-015-1613-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
He X, Aglio T, Deschamps JR, Rai R, Xue F. Synthesis of 1,2-dihydro-2-oxo-4-quinolinyl phosphates from 2-acyl-benzoic acids. Tetrahedron Lett 2015; 56:1441-1444. [PMID: 25937677 DOI: 10.1016/j.tetlet.2015.01.188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We report a facile synthesis of 1,2-dihydro-2-oxo-4-quinolinyl phosphates (1a-l) starting from 2-acyl-benzoic acids (2a-l) in the presence of phosphoryl azides via a one-pot cascade reaction involving a Curtius rearrangement, an intramolecular nucleophilic addition of the enol carbon to the isocyanate intermediate, and an addition-elimination of the enol oxygen to the phosphoryl azide. During the reaction three new bonds are formed under mild conditions to yield 1,2-dihydro-2-oxo-4-quinolinyl phosphates in modest yields.
Collapse
Affiliation(s)
- Xinhua He
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201
| | - Tharcilla Aglio
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201
| | - Jeffrey R Deschamps
- Naval Research Laboratory, Code 6930, 4555 Overlook Ave., Washington, DC 20375
| | - Rachita Rai
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201
| |
Collapse
|
11
|
Lalitha K, Muthusamy K, Prasad YS, Vemula PK, Nagarajan S. Recent developments in β-C-glycosides: synthesis and applications. Carbohydr Res 2014; 402:158-71. [PMID: 25498016 DOI: 10.1016/j.carres.2014.10.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/11/2014] [Accepted: 10/16/2014] [Indexed: 11/26/2022]
Abstract
In the last few years, considerable progress has been made in the synthesis of C-glycosides. Despite its challenging chemistry, due to its versatility, C-glycosides play a pivotal role in developing novel materials, surfactants and bioactive molecules. In this review, we present snapshots of various synthetic methodologies developed for C-glycosides in the recent years and the potential application of C-glycosides derived from β-C-glycosidic ketones.
Collapse
Affiliation(s)
- Krishnamoorthy Lalitha
- Organic Synthesis Group, Department of Chemistry and the Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, Tamil Nadu, India
| | - Kumarasamy Muthusamy
- Organic Synthesis Group, Department of Chemistry and the Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, Tamil Nadu, India
| | - Y Siva Prasad
- Organic Synthesis Group, Department of Chemistry and the Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, Tamil Nadu, India
| | - Praveen Kumar Vemula
- Technologies for the Advancement of Science, Institute for Stem Cell Biology and Regenerative Medicine (inStem), National Centre for Biological Sciences, UAS-GKVK Post, Bellary Road, Bangalore 560065, India
| | - Subbiah Nagarajan
- Organic Synthesis Group, Department of Chemistry and the Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, Tamil Nadu, India.
| |
Collapse
|
12
|
|