1
|
Hajdaś G, Kawka A, Koenig H, Kułaga D, Sosnowska K, Mrówczyńska L, Pospieszny T. Click chemistry as a method for the synthesis of steroid bioconjugates of bile acids derivatives and sterols. Steroids 2023; 199:109282. [PMID: 37482327 DOI: 10.1016/j.steroids.2023.109282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Six steroid conjugates of bile acids and sterol derivatives have been synthesized using the click chemistry method. The azide-alkyne Huisgen cycloaddition of the propionyl ester of lithocholic, deoxycholic and cholic acid with azide derivatives of cholesterol and cholestanol gave new bile acid-sterol conjugates linked with a 1,2,3-triazole ring. Previously, sterols were converted to bromoacetate substituted derivatives by reaction with bromoacetic acid bromide in anhydrous dichloromethane. These compounds were then converted to azide derivatives using sodium azide. The propiolic esters of lithocholic, deoxycholic and cholic acids were obtained by reaction with propiolic acid in the presence of p-toluenesulfonic acid. Additionally, two of these steroids: methyl 3α-propynoyloxy-12α-acetoxy-5β-cholane-24-oate and methyl 3α-propynoyloxy-7 α,12α-diacetoxy-5β-cholane-24-oate were also obtained and characterized for the first time. All conjugates were obtained in good yields using an efficient synthesis method. The structures of all conjugates and the four substrates were confirmed by spectral (1H- and 13C NMR, FT-IR) analysis, mass spectrometry (ESI-MS), and PM5 semiempirical methods. The pharmacotherapeutic potential of the synthesized compounds was estimated based on the in silico Prediction of Activity Spectra for Substances (PASS) method. The cytotoxicity of the compounds was in vitro evaluated in a hemolytic assay using human erythrocytes as a cell model. The in silico and in vitro study results indicate that the selected compound possesses an interesting biological activity and can be considered as potential drug design agent. Additionally, molecular docking was performed for the selected conjugate.
Collapse
Affiliation(s)
- Grzegorz Hajdaś
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8 Street, 61-614 Poznań, Poland
| | - Anna Kawka
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8 Street, 61-614 Poznań, Poland
| | - Hanna Koenig
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8 Street, 61-614 Poznań, Poland
| | - Damian Kułaga
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24 Street, 31-155 Kraków, Poland
| | - Katarzyna Sosnowska
- Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Lucyna Mrówczyńska
- Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Tomasz Pospieszny
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8 Street, 61-614 Poznań, Poland.
| |
Collapse
|
2
|
Hoffmann M, Snyder NL, Hartmann L. Glycosaminoglycan Mimetic Precision Glycomacromolecules with Sequence-Defined Sulfation and Rigidity Patterns. Biomacromolecules 2022; 23:4004-4014. [PMID: 35959886 DOI: 10.1021/acs.biomac.2c00829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sulfated glycosaminoglycans (sGAGs) such as heparan sulfate (HS) are structurally diverse linear polysaccharides that are involved in many biological processes and have gained interest as antiviral compounds. Their recognition is driven by a complex orchestra of structural parameters that are still under intense investigation. One distinct characteristic is the incorporation of sulfation patterns including highly sulfated and non-sulfated sequences that provide variations in flexibility and conformation, which in turn impact the biological function of sGAGs. However, these distinct features have not yet been fully realized in the synthetic preparation of sGAG mimetics. Here, we present the synthesis of three groups of sulfated glycomacromolecules as sGAG mimetics: (i) globally sulfated glycooligomers, (ii) glycooligomers with sequence-defined sulfation patterns, and (iii) a globally sulfated glycooligomer-oligo-L-proline hybrid structure. The complete synthesis, including chemical sulfation, was conducted on solid support, enabled by the introduction of a commercially available photocleavable linker allowing for the preservation of sensitive sulfates during cleavage of the products. Structures were obtained in good purity and with high degrees of sulfation demonstrating the wide applicability of this methodology to prepare tailor-made sulfated glycomacromolecules and similar sGAG mimetics. Structures were tested for their anticoagulant properties showing activity similar to their natural HS counterpart and significantly lower than HP.
Collapse
Affiliation(s)
- Miriam Hoffmann
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Nicole L Snyder
- Department of Chemistry, Davidson College, Davidson, North Carolina 28035, United States
| | - Laura Hartmann
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
3
|
Pospieszny T, Koenig H. Design, synthesis, spectral and theoretical study of new bile acid-sterol conjugates linked via 1,2,3-triazole ring. Steroids 2021; 176:108934. [PMID: 34699839 DOI: 10.1016/j.steroids.2021.108934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 10/06/2021] [Accepted: 10/14/2021] [Indexed: 11/20/2022]
Abstract
New four steroid conjugates have been prepared from bile acids and sterol derivatives using click chemistry method. The azide-alkyne Huisgen cycloaddition (intermolecular 1,3-dipolar cycloaddition) of the propargyl ester of lithocholic, deoxycholic, cholic acid as well as dehydrocholic acids and azide derivatives of cholesterol gave a new bile acid-sterol conjugates linked with a 1,2,3-triazole ring. Previously, bile acids were converted into bromoacetyl substituted derivatives by the reaction of propargyl esters of lithocholic, deoxycholic, cholic with bromoacetic acid bromide in toluene with TEBA and sodium hydride. All conjugates were obtained in good yields using an efficient synthesis method. The structures of all products were confirmed by spectral (1H- and 13C NMR, and FT-IR) analysis, mass spectrometry (ESI-MS), as well as PM5 semiempirical methods. Estimation of the pharmacotherapeutic potential has been accomplished for the synthesized compounds on the basis of Prediction of Activity Spectra for Substances (PASS).
Collapse
Affiliation(s)
- Tomasz Pospieszny
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8 Street, 61-614 Poznań, Poland.
| | - Hanna Koenig
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8 Street, 61-614 Poznań, Poland
| |
Collapse
|
4
|
Verzele D, Ruiz García Y, Madder A. Untapped Opportunities of Resin-to-Resin Transfer Reactions (RRTR) for the Convergent Assembly of Multivalent Peptide Conjugates. Chemistry 2020; 26:4701-4705. [PMID: 31997431 DOI: 10.1002/chem.202000434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Indexed: 11/07/2022]
Abstract
Handling of the individual fragments remains a bottleneck in the convergent assembly of peptides. Overlooked since the emergence of ligation chemistries during the past two decades, so-called resin-to-resin transfer reactions (RRTR) are here described as a strategic shortcut in this context. Condensation of the involved moieties at an acceptor resin is facilitated by shuttling peptide segments directly from a donor resin in a one-pot fashion. The straightforward synthesis of a sterically constrained 13-mer peptidosteroid model illustrates the utility of this approach, presenting the first successful application of the RRTR methodology in the field of multivalent design and bioconjugation. Relying on established procedures to generate, monitor and isolate intermediates and products, the solid-phase nature of the entire strategy allows for the fast construction of polypeptide adducts and libraries thereof. As such, a rejuvenated use and new opportunities for RRTR are reported.
Collapse
Affiliation(s)
- Dieter Verzele
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 (S4), 9000, Ghent, Belgium
| | - Yara Ruiz García
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 (S4), 9000, Ghent, Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 (S4), 9000, Ghent, Belgium
| |
Collapse
|
5
|
Singla P, Salunke DB. Recent advances in steroid amino acid conjugates: Old scaffolds with new dimensions. Eur J Med Chem 2020; 187:111909. [PMID: 31830636 DOI: 10.1016/j.ejmech.2019.111909] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022]
|
6
|
Kacprzak K, Skiera I, Piasecka M, Paryzek Z. Alkaloids and Isoprenoids Modification by Copper(I)-Catalyzed Huisgen 1,3-Dipolar Cycloaddition (Click Chemistry): Toward New Functions and Molecular Architectures. Chem Rev 2016; 116:5689-743. [DOI: 10.1021/acs.chemrev.5b00302] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Karol Kacprzak
- Bioorganic Chemistry Department, Faculty of Chemistry, Adam Mickiewicz University, Ul. Umultowska 89b, 61-614 Poznań, Poland
| | - Iwona Skiera
- Bioorganic Chemistry Department, Faculty of Chemistry, Adam Mickiewicz University, Ul. Umultowska 89b, 61-614 Poznań, Poland
| | - Monika Piasecka
- Bioorganic Chemistry Department, Faculty of Chemistry, Adam Mickiewicz University, Ul. Umultowska 89b, 61-614 Poznań, Poland
| | - Zdzisław Paryzek
- Bioorganic Chemistry Department, Faculty of Chemistry, Adam Mickiewicz University, Ul. Umultowska 89b, 61-614 Poznań, Poland
| |
Collapse
|
7
|
Castro V, Rodríguez H, Albericio F. CuAAC: An Efficient Click Chemistry Reaction on Solid Phase. ACS COMBINATORIAL SCIENCE 2016; 18:1-14. [PMID: 26652044 DOI: 10.1021/acscombsci.5b00087] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Click chemistry is an approach that uses efficient and reliable reactions, such as Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC), to bind two molecular building blocks. CuAAC has broad applications in medicinal chemistry and other fields of chemistry. This review describes the general features and applications of CuAAC in solid-phase synthesis (CuAAC-SP), highlighting the suitability of this kind of reaction for peptides, nucleotides, small molecules, supramolecular structures, and polymers, among others. This versatile reaction is expected to become pivotal for meeting future challenges in solid-phase chemistry.
Collapse
Affiliation(s)
- Vida Castro
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology 08028-Barcelona, Spain
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, 08028-Barcelona, Spain
| | - Hortensia Rodríguez
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology 08028-Barcelona, Spain
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, 08028-Barcelona, Spain
- School
of Chemistry, Yachay Tech, Yachay City of Knowledge, Urcuqui, Ecuador
| | - Fernando Albericio
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology 08028-Barcelona, Spain
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, 08028-Barcelona, Spain
- Department
of Organic Chemistry, University of Barcelona, 08028-Barcelona, Spain
- School of Chemistry & Physics, University of KwaZulu-Natal, 4001-Durban, South Africa
| |
Collapse
|