1
|
Mamedov VA, Mamedova VL, Syakaev VV, Gubaidullin AT, Voronina JK, Kushatov TA, Korshin DE, Samigullina AI, Tanysheva EG, Kh. Rizvanov I, Latypov SK. New and efficient synthesis of 3-arylquinazolin-4(1H)-ones and biologically important N-fused tetracycles based on N-(2-carboxyphenyl)oxalamide. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
2
|
Abstract
This review describes the non-exhaustive scenery of the synthesis of various
biologically interesting pyrimidine annulated five-membered heterocyclic ring systems
that have been appeared in the literature during the last two decades. During this period,
different synthetic routes and various methodologies have been developed for the functionalization
of pyrimidine ring towards the construction of five-membered heterocyclic
rings. The aim of this review is to give an overview of the assorted methodologies that
have been reported about the chemistry of construction of pyrimidines annulated nitrogen,
oxygen and sulphur containing five-membered heterocycles.
Collapse
Affiliation(s)
- Pradip Kumar Maji
- Department of Chemistry, Bidhan Chandra College, Asansol, Paschim Bardhaman, 713304, Rishra, West Bangal, India
| |
Collapse
|
3
|
Shaabani A, Nazeri MT, Afshari R. 5-Amino-pyrazoles: potent reagents in organic and medicinal synthesis. Mol Divers 2018; 23:751-807. [PMID: 30552550 DOI: 10.1007/s11030-018-9902-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/04/2018] [Indexed: 12/31/2022]
Abstract
5-Amino-pyrazoles have proven to be a class of fascinating and privileged organic tools for the construction of diverse heterocyclic or fused heterocyclic scaffolds. This review presents comprehensively the applications of 5-amino-pyrazoles as versatile synthetic building blocks in the synthesis of remarkable organic molecules with an emphasis on versatile functionalities. Following a brief introduction of synthesis methods, planning strategies to construct organic compounds, particularly diverse heterocyclic scaffolds, such as poly-substituted heterocyclic compounds and fused heterocyclic compounds via 5-amino-pyrazoles, have been summarized. Fused heterocycles are classified as bicyclic, tricyclic, tetracyclic, and spiro-fused pyrazole derivatives. These outstanding compounds synthesized via wide variety of approaches include conventional reactions, one-pot multi-component reactions, cyclocondensation, cascade/tandem protocols, and coupling reactions. 5-Amino-pyrazoles represent a class of promising functional reagents, similar to the biologically active compounds, highlighted with diverse applications especially in the field of pharmaceutics and medicinal chemistry. Notably, this critical review covers the articles published from 1981 to 2018.
Collapse
Affiliation(s)
- Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
| | - Mohammad Taghi Nazeri
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran
| | - Ronak Afshari
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran
| |
Collapse
|
4
|
Annor-Gyamfi JK, Gnanasekaran KK, Bunce RA. Syntheses of 1-Aryl-5-nitro-1H-indazoles and a General One-Pot Route to 1-Aryl-1H-indazoles. Molecules 2018; 23:molecules23030674. [PMID: 29547568 PMCID: PMC6017161 DOI: 10.3390/molecules23030674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 11/16/2022] Open
Abstract
An efficient route to substituted 1-aryl-1H-indazoles has been developed and optimized. The method involved the preparation of arylhydrazones from acetophenone or benzaldehyde substituted by fluorine at C2 and nitro at C5, followed by deprotonation and nucleophilic aromatic substitution (SNAr) ring closure in 45–90%. Modification of this procedure to a one-pot domino process was successful in the acetophenone series (73–96%), while the benzaldehyde series (63–73%) required a step-wise addition of reagents. A general one-pot protocol for 1-aryl-1H-indazole formation without the limiting substitution patterns required for the SNAr cyclization has also been achieved in 62–78% yields. A selection of 1-aryl-1H-indazoles was prepared in high yield by a procedure that requires only a single laboratory operation.
Collapse
Affiliation(s)
- Joel K Annor-Gyamfi
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078-3071, USA.
| | | | - Richard A Bunce
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078-3071, USA.
| |
Collapse
|
5
|
Metwally NH, Mohamed MS. Pyrazoloquinazoline derivatives: Synthesis, reactions, and biological applications. SYNTHETIC COMMUN 2018. [DOI: 10.1080/00397911.2017.1399208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Mona Said Mohamed
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
6
|
Guerrini G, Ciciani G, Crocetti L, Daniele S, Ghelardini C, Giovannoni MP, Iacovone A, Di Cesare Mannelli L, Martini C, Vergelli C. Identification of a New Pyrazolo[1,5-a]quinazoline Ligand Highly Affine to γ-Aminobutyric Type A (GABAA) Receptor Subtype with Anxiolytic-Like and Antihyperalgesic Activity. J Med Chem 2017; 60:9691-9702. [DOI: 10.1021/acs.jmedchem.7b01151] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gabriella Guerrini
- Dipartimento
NEUROFARBA, Sezione Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, Sesto
Fiorentino, Firenze 50019, Italy
| | - Giovanna Ciciani
- Dipartimento
NEUROFARBA, Sezione Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, Sesto
Fiorentino, Firenze 50019, Italy
| | - Letizia Crocetti
- Dipartimento
NEUROFARBA, Sezione Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, Sesto
Fiorentino, Firenze 50019, Italy
| | - Simona Daniele
- Dipartimento
FARMACIA, Università degli Studi di Pisa, Pisa56126, Italy
| | - Carla Ghelardini
- Dipartimento
NEUROFARBA, Sezione Farmacologia, Università degli Studi di Firenze, Sesto
Fiorentino, Firenze 50019, Italy
| | - Maria Paola Giovannoni
- Dipartimento
NEUROFARBA, Sezione Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, Sesto
Fiorentino, Firenze 50019, Italy
| | - Antonella Iacovone
- Dipartimento
NEUROFARBA, Sezione Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, Sesto
Fiorentino, Firenze 50019, Italy
| | - Lorenzo Di Cesare Mannelli
- Dipartimento
NEUROFARBA, Sezione Farmacologia, Università degli Studi di Firenze, Sesto
Fiorentino, Firenze 50019, Italy
| | - Claudia Martini
- Dipartimento
FARMACIA, Università degli Studi di Pisa, Pisa56126, Italy
| | - Claudia Vergelli
- Dipartimento
NEUROFARBA, Sezione Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, Sesto
Fiorentino, Firenze 50019, Italy
| |
Collapse
|
8
|
Gnanasekaran KK, Muddala NP, Bunce RA. Benzo[4,5]imidazo[2,1-b]quinazolin-12-ones and benzo[4,5]imidazo[1,2-a]pyrido[2,3-d]pyrimidin-5-ones by a sequential N-acylation–SNAr reaction. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.11.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|