1
|
Williams DE, Cassel J, Zhu JL, Yang JX, de Voogd NJ, Matainaho T, Salvino JM, Wang YA, Montaner LJ, Tietjen I, Andersen RJ. Thorectidiol A Isolated from the Marine Sponge Dactylospongia elegans Disrupts Interactions of the SARS-CoV-2 Spike Receptor Binding Domain with the Host ACE2 Receptor. JOURNAL OF NATURAL PRODUCTS 2023; 86:582-588. [PMID: 36657039 PMCID: PMC9885524 DOI: 10.1021/acs.jnatprod.2c01030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Indexed: 06/15/2023]
Abstract
Thorectidiols isolated from the marine sponge Dactylospongia elegans (family Thorectidae, order Dictyoceratida) collected in Papua New Guinea are a family of symmetrical and unsymmetrical dimeric biphenyl meroterpenoid stereoisomers presumed to be products of oxidative phenol coupling of a co-occurring racemic monomer, thorectidol (3). One member of the family, thorectidiol A (1), has been isolated in its natural form, and its structure has been elucidated by analysis of NMR, MS, and ECD data. Acetylation of the sponge extract facilitated isolation of additional thorectidiol diacetate stereoisomers and the isolation of the racemic monomer thorectidol acetate (6). Racemic thorectidiol A (1) showed selective inhibition of the SARS-CoV-2 spike receptor binding domain (RBD) interaction with the host ACE2 receptor with an IC50 = 1.0 ± 0.7 μM.
Collapse
Affiliation(s)
- David E Williams
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, B.C. Canada, V6T 1Z1
- Department of Earth, Ocean & Atmospheric Sciences, University of British Columbia, 2207 Main Mall, Vancouver, B.C. Canada, V6T 1Z4
| | - Joel Cassel
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Jin-Lin Zhu
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, B.C. Canada, V6T 1Z1
| | - Jian-Xiong Yang
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, B.C. Canada, V6T 1Z1
| | - Nicole J de Voogd
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands
| | - Teatulohi Matainaho
- University of Papua New Guinea, University National Capital District, 134, Papua New Guinea
| | - Joseph M Salvino
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Yan Alexander Wang
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, B.C. Canada, V6T 1Z1
| | - Luis J Montaner
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Ian Tietjen
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Raymond J Andersen
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, B.C. Canada, V6T 1Z1
- Department of Earth, Ocean & Atmospheric Sciences, University of British Columbia, 2207 Main Mall, Vancouver, B.C. Canada, V6T 1Z4
| |
Collapse
|
2
|
Avalon N, Nafie J, De Marco Verissimo C, Warrensford LC, Dietrick SG, Pittman AR, Young RM, Kearns FL, Smalley T, Binning JM, Dalton JP, Johnson MP, Woodcock HL, Allcock AL, Baker BJ. Tuaimenal A, a Meroterpene from the Irish Deep-Sea Soft Coral Duva florida, Displays Inhibition of the SARS-CoV-2 3CLpro Enzyme. JOURNAL OF NATURAL PRODUCTS 2022; 85:1315-1323. [PMID: 35549259 PMCID: PMC9127705 DOI: 10.1021/acs.jnatprod.2c00054] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Indexed: 06/15/2023]
Abstract
Cold water benthic environments are a prolific source of structurally diverse molecules with a range of bioactivities against human disease. Specimens of a previously chemically unexplored soft coral, Duva florida, were collected during a deep-sea cruise that sampled marine invertebrates along the Irish continental margin in 2018. Tuaimenal A (1), a cyclized merosesquiterpenoid representing a new carbon scaffold with a highly substituted chromene core, was discovered through exploration of the soft coral secondary metabolome via NMR-guided fractionation. The absolute configuration was determined through vibrational circular dichroism. Functional biochemical assays and in silico docking experiments found tuaimenal A selectively inhibits the viral main protease (3CLpro) of SARS-CoV-2.
Collapse
Affiliation(s)
- Nicole
E. Avalon
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Jordan Nafie
- BioTools,
Inc., Jupiter, Florida 33458, United
States
| | - Carolina De Marco Verissimo
- Molecular
Parasitology Laboratory (MPL), Centre for One Health and Ryan Institute,
School of Natural Science, National University
of Ireland Galway, H91 TK33 Galway, Republic of
Ireland
| | - Luke C. Warrensford
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Sarah G. Dietrick
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Amanda R. Pittman
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Ryan M. Young
- School
of Natural Sciences and Ryan Institute, National University of Ireland Galway, H91 TK33 Galway, Republic of Ireland
| | - Fiona L. Kearns
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Tracess Smalley
- Department
of Molecular Oncology, H. Lee Moffitt Cancer
Center and Research Institute, Tampa, Florida 33612, United States
| | - Jennifer M. Binning
- Department
of Molecular Oncology, H. Lee Moffitt Cancer
Center and Research Institute, Tampa, Florida 33612, United States
| | - John P. Dalton
- Molecular
Parasitology Laboratory (MPL), Centre for One Health and Ryan Institute,
School of Natural Science, National University
of Ireland Galway, H91 TK33 Galway, Republic of
Ireland
| | - Mark P. Johnson
- School
of Natural Sciences and Ryan Institute, National University of Ireland Galway, H91 TK33 Galway, Republic of Ireland
| | - H. Lee Woodcock
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - A. Louise Allcock
- School
of Natural Sciences and Ryan Institute, National University of Ireland Galway, H91 TK33 Galway, Republic of Ireland
| | - Bill J. Baker
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
3
|
Semi-Synthesis and Evaluation of Sargahydroquinoic Acid Derivatives as Potential Antimalarial Agents. MEDICINES 2019; 6:medicines6020047. [PMID: 30939856 PMCID: PMC6630221 DOI: 10.3390/medicines6020047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 11/21/2022]
Abstract
Background: Malaria continues to present a major health problem, especially in developing countries. The development of new antimalarial drugs to counter drug resistance and ensure a steady supply of new treatment options is therefore an important area of research. Meroditerpenes have previously been shown to exhibit antiplasmodial activity against a chloroquinone sensitive strain of Plasmodium falciparum (D10). In this study we explored the antiplasmodial activity of several semi-synthetic analogs of sargahydroquinoic acid. Methods: Sargahydroquinoic acid was isolated from the marine brown alga, Sargassum incisifolium and converted, semi-synthetically, to several analogs. The natural products, together with their synthetic derivatives were evaluated for their activity against the FCR-3 strain of Plasmodium falciparum as well as MDA-MB-231 breast cancer cells. Results: Sarganaphthoquinoic acid and sargaquinoic acid showed the most promising antiplasmodial activity and low cytotoxicity. Conclusions: Synthetic modification of the natural product, sargahydroquinoic acid, resulted in the discovery of a highly selective antiplasmodial compound, sarganaphthoquinoic acid.
Collapse
|
4
|
6-(4-Methylpent-3-en-1-yl)naphthalene-1,4-dione, a behaviorally active semivolatile in tibial perfumes of orchid bees. CHEMOECOLOGY 2018. [DOI: 10.1007/s00049-018-0264-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
García PA, Hernández ÁP, San Feliciano A, Castro MÁ. Bioactive Prenyl- and Terpenyl-Quinones/Hydroquinones of Marine Origin †. Mar Drugs 2018; 16:E292. [PMID: 30134616 PMCID: PMC6165040 DOI: 10.3390/md16090292] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 01/05/2023] Open
Abstract
The sea is a rich source of biological active compounds, among which terpenyl-quinones/hydroquinones constitute a family of secondary metabolites with diverse pharmacological properties. The chemical diversity and bioactivity of those isolated from marine organisms in the last 10 years are summarized in this review. Aspects related to synthetic approaches towards the preparation of improved bioactive analogues from inactive terpenoids are also outlined.
Collapse
Affiliation(s)
- Pablo A García
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Section, CIETUS/IBSAL, Faculty of Pharmacy, University of Salamanca, E-37007 Salamanca, Spain.
| | - Ángela P Hernández
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Section, CIETUS/IBSAL, Faculty of Pharmacy, University of Salamanca, E-37007 Salamanca, Spain.
| | - Arturo San Feliciano
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Section, CIETUS/IBSAL, Faculty of Pharmacy, University of Salamanca, E-37007 Salamanca, Spain.
| | - Mª Ángeles Castro
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Section, CIETUS/IBSAL, Faculty of Pharmacy, University of Salamanca, E-37007 Salamanca, Spain.
| |
Collapse
|
6
|
Cadelis MM, Bourguet-Kondracki ML, Dubois J, Kaiser M, Brunel JM, Barker D, Copp BR. Structure-activity relationship studies on thiaplidiaquinones A and B as novel inhibitors of Plasmodium falciparum and farnesyltransferase. Bioorg Med Chem 2017; 25:4433-4443. [DOI: 10.1016/j.bmc.2017.06.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/15/2017] [Accepted: 06/16/2017] [Indexed: 10/19/2022]
|
7
|
Abstract
Covering: 2015. Previous review: Nat. Prod. Rep., 2016, 33, 382-431This review covers the literature published in 2015 for marine natural products (MNPs), with 1220 citations (792 for the period January to December 2015) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1340 in 429 papers for 2015), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Murray H G Munro
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
8
|
Abstract
Concise syntheses of parvistemin A and diperezone are achieved using ring expansion of cyclobutenones and oxidative phenolic coupling under basic conditions.
Collapse
Affiliation(s)
- Songsong Gao
- School of Chemistry & Material Science
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education of China
- Northwest University
- Xi'an 710127
- China
| | - Xiangdong Hu
- School of Chemistry & Material Science
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education of China
- Northwest University
- Xi'an 710127
- China
| |
Collapse
|
9
|
Yeung L, Pilkington LI, Cadelis MM, Copp BR, Barker D. Total synthesis of panicein A2. Beilstein J Org Chem 2015; 11:1991-6. [PMID: 26664619 PMCID: PMC4660959 DOI: 10.3762/bjoc.11.215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/06/2015] [Indexed: 11/23/2022] Open
Abstract
The first total synthesis of the unusual aromatic sesquiterpene panicein A2 is reported and the structure of the natural product has been confirmed. When tested by the NCI against a range of human cancer cell lines, it was found that panicein A2 exhibits very little antiproliferative activity at 10 μM – an observation that is at odds with the earlier report that stated panicein A2 exhibits in vitro cytotoxicity against a number of tumour cell lines.
Collapse
Affiliation(s)
- Lili Yeung
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - Lisa I Pilkington
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - Melissa M Cadelis
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - David Barker
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| |
Collapse
|
10
|
Darsih C, Prachyawarakorn V, Wiyakrutta S, Mahidol C, Ruchirawat S, Kittakoop P. Cytotoxic metabolites from the endophytic fungus Penicillium chermesinum: discovery of a cysteine-targeted Michael acceptor as a pharmacophore for fragment-based drug discovery, bioconjugation and click reactions. RSC Adv 2015. [DOI: 10.1039/c5ra13735g] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A novel tetracyclic polyketide uniquely spiro-attached with a γ-lactone ring and a potent cytotoxic agent possessing a thiol-reactive pharmacophore were isolated from the mangrove endophytic fungus Penicillium chermesinum.
Collapse
Affiliation(s)
- Cici Darsih
- Chulabhorn Graduate Institute
- Chemical Biology Program
- Bangkok 10210
- Thailand
| | | | - Suthep Wiyakrutta
- Department of Microbiology
- Faculty of Science
- Mahidol University
- Bangkok 10400
- Thailand
| | - Chulabhorn Mahidol
- Chulabhorn Graduate Institute
- Chemical Biology Program
- Bangkok 10210
- Thailand
- Chulabhorn Research Institute
| | - Somsak Ruchirawat
- Chulabhorn Graduate Institute
- Chemical Biology Program
- Bangkok 10210
- Thailand
- Chulabhorn Research Institute
| | - Prasat Kittakoop
- Chulabhorn Graduate Institute
- Chemical Biology Program
- Bangkok 10210
- Thailand
- Chulabhorn Research Institute
| |
Collapse
|