1
|
Izquierdo S, Cintas P, Durán-Valle CJ, de la Concepción JG, López-Coca IM. Reinvigorating aza-Michael reactions under ionic liquid catalysis: a greener approach. Org Biomol Chem 2024; 22:2423-2434. [PMID: 38415317 DOI: 10.1039/d3ob02006a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Cholinium α-amino carboxylates, which debuted in the ionic liquid arena over a decade ago, exhibit superior stability and suitable physical properties relative to other RTILs. Although synthetic pursuits in such media, leveraging their dual role as solvents and catalysts, have been scarce so far, we herein illustrate their catalytic advantage in aza-Michael reactions in terms of low loading, acceleration and improved yields with respect to conventional conditions and other imidazolium-based ILs. These highly structured salts most likely act through multiple and cooperative non-covalent interactions. These mechanistic features have also been investigated through high-level computational analyses as well.
Collapse
Affiliation(s)
- Silvia Izquierdo
- Department of Organic and Inorganic Chemistry, School of Technology and INTERRA-Sustainable and Environmental Chemistry Lab, Universidad de Extremadura, 10003-Cáceres, Spain.
| | - Pedro Cintas
- Department of Organic and Inorganic Chemistry, Faculty of Sciences and IACYS-Green Chemistry and Sustainable Development Unit, Universidad de Extremadura, 06006-Badajoz, Spain
| | - Carlos J Durán-Valle
- Department of Organic and Inorganic Chemistry, Faculty of Sciences and IACYS-Green Chemistry and Sustainable Development Unit, Universidad de Extremadura, 06006-Badajoz, Spain
| | - Juan García de la Concepción
- Department of Organic and Inorganic Chemistry, Faculty of Sciences and IACYS-Green Chemistry and Sustainable Development Unit, Universidad de Extremadura, 06006-Badajoz, Spain
| | - Ignacio M López-Coca
- Department of Organic and Inorganic Chemistry, School of Technology and INTERRA-Sustainable and Environmental Chemistry Lab, Universidad de Extremadura, 10003-Cáceres, Spain.
| |
Collapse
|
2
|
Yadav A, Ambule MD, Srivastava AK. Catalyst-free anti-Markovnikov hydroamination and hydrothiolation of vinyl heteroarenes in aqueous medium: an improved process towards centhaquine. Org Biomol Chem 2024; 22:1721-1726. [PMID: 38318984 DOI: 10.1039/d3ob02046k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Catalyst-free hydroamination and hydrothiolation of alkenes have been achieved in an aqueous medium. The anti-Markovnikov addition works efficiently in suspended water at room temperature and allows straightforward access to centhaquine, a drug used for the management of hypovolemic shocks in critically ill patients, and its derivatives. Various primary and secondary amines, thiols, and hydrazides were successfully reacted with a number of heteroaryl/aryl-alkenes. The scalability of the process has been demonstrated by synthesizing centhaquine at a 19.65 g scale. A comparative analysis of the present process with previous approaches has been provided on the basis of green chemistry metrics.
Collapse
Affiliation(s)
- Anamika Yadav
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow-226031, India.
- Chemical Sciences Division, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Mayur D Ambule
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow-226031, India.
- Chemical Sciences Division, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Ajay Kumar Srivastava
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow-226031, India.
- Chemical Sciences Division, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
3
|
Du Y, Jiang B, Han G. A Facile Highly Selective Anti‐Markovnikov Hydroamination of Vinyl Pyridines by Free Radical Oxidation. ChemistrySelect 2022. [DOI: 10.1002/slct.202204136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Yue‐Yue Du
- College of Chemistry and Molecular Engineering Nanjing Tech University Nanjing 211816 P. R. of. China
| | - Bo Jiang
- College of Chemistry and Molecular Engineering Nanjing Tech University Nanjing 211816 P. R. of. China
| | - Guo‐Zhi Han
- College of Chemistry and Molecular Engineering Nanjing Tech University Nanjing 211816 P. R. of. China
| |
Collapse
|
4
|
Gholinejad M, Zareh F, Sheibani H, Nájera C, Yus M. Magnetic ionic liquids as catalysts in organic reactions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Patil P, N NB, Satyanarayan ND, Pore S, Zond R, Hangirgekar AGS, Sankpal S. Design, synthesis, docking studies and anticancer evaluation of spiro[indoline-3,4′-pyrano[2,3-c]pyrazole] derivatives on MIN-6 cancer cell line. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Kaur C, Sharma S, Thakur A, Sharma R. ASYMMETRIC SYNTHESIS: A GLANCE AT VARIOUS METHODOLOGIES FOR DIFFERENT FRAMEWORKS. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220610162605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Asymmetric reactions have made a significant advancement over the past few decades and involved the production of enantiomerically pure molecules using enantioselective organocatalysis, chiral auxiliaries/substrates, and reagents via controlling the absolute stereochemistry. The laboratory synthesis from an enantiomerically impure starting material gives a combination of enantiomers which are difficult to separate for chemists in the fields of medicine, chromatography, pharmacology, asymmetric synthesis, studies of structure-function relationships of proteins, life sciences and mechanistic studies. This challenging step of separation can be avoided by the use of asymmetric synthesis. Using pharmacologically relevant scaffolds/pharmacophores, the drug designing can also be achieved using asymmetric synthesis to synthesize receptor specific pharmacologically active chiral molecules. This approach can be used to synthesize asymmetric molecules from wide variety of reactants using specific asymmetric conditions which is also beneficial for environment due to less usage and discharge of chemicals into the environment. So, in this review, we have focused on the inclusive collation of diverse mechanisms in this area, to encourage auxiliary studies of asymmetric reactions to develop selective, efficient, environment-friendly and high yielding advanced processes in asymmetric reactions.
Collapse
Affiliation(s)
- Charanjit Kaur
- Department of Pharmaceutical Chemistry, Khalsa College of Pharmacy, Amritsar, Punjab, 143002
| | - Sachin Sharma
- School of Pharmacy, Taipei Medical University, Taiwan
| | | | - Ram Sharma
- School of Pharmacy, Taipei Medical University, Taiwan
| |
Collapse
|
7
|
Dhameliya TM, Nagar PR, Bhakhar KA, Jivani HR, Shah BJ, Patel KM, Patel VS, Soni AH, Joshi LP, Gajjar ND. Recent advancements in applications of ionic liquids in synthetic construction of heterocyclic scaffolds: A spotlight. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118329] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Fatemeh Mohammadi Metkazini S, Heydari A. Acid‐Base Magnetic Silica Heterogeneous Catalyst for Green Aldol and Aza‐Michael Reactions. ChemistrySelect 2021. [DOI: 10.1002/slct.202103170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Akbar Heydari
- Department of Chemical Faculty of Sciences Tarbiat Modares University, PO Box 14155-4838, 14117–13116 Tehran Iran
| |
Collapse
|
9
|
Sun M, Yang J, Fu Y, Liang C, Li H, Yan G, Yin C, Yu W, Ma Y, Cheng R, Ye J. Continuous Flow Process for the Synthesis of Betahistine via Aza-Michael-Type Reaction in Water. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.0c00543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maolin Sun
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006 China
| | - Jingxin Yang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Youtian Fu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Chaoming Liang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006 China
| | - Hong Li
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Guoming Yan
- Shanghai Zhongxi Sunve Pharmaceutical Co., Ltd., No. 158 Minle Road, Fengxian District, Shanghai 201419, China
| | - Chao Yin
- Shanghai Zhongxi Sunve Pharmaceutical Co., Ltd., No. 158 Minle Road, Fengxian District, Shanghai 201419, China
| | - Wei Yu
- Shanghai Zhongxi Sunve Pharmaceutical Co., Ltd., No. 158 Minle Road, Fengxian District, Shanghai 201419, China
| | - Yueyue Ma
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ruihua Cheng
- School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jinxing Ye
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006 China
| |
Collapse
|
10
|
Bhattacharjee S, Shaikh AA, Ahn WS. Heterogeneous Aza-Michael Addition Reaction by the Copper-Based Metal–Organic Framework (CuBTC). Catal Letters 2020. [DOI: 10.1007/s10562-020-03459-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Mathieu G, Patel H, Lebel H. Convenient Continuous Flow Synthesis of N-Methyl Secondary Amines from Alkyl Mesylates and Epoxides. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Gary Mathieu
- Department of Chemistry and Center in Green Chemistry and Catalysis (CGCC), Université de Montréal, P.O. Box 6128, Station Downtown, Montréal, QC H3C 3J7, Canada
| | - Heena Patel
- Department of Chemistry and Center in Green Chemistry and Catalysis (CGCC), Université de Montréal, P.O. Box 6128, Station Downtown, Montréal, QC H3C 3J7, Canada
| | - Hélène Lebel
- Department of Chemistry and Center in Green Chemistry and Catalysis (CGCC), Université de Montréal, P.O. Box 6128, Station Downtown, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
12
|
Ballarotto M, Cappellini F, Maestri R, Del Giacco T, Di Profio P, Tiecco M, Germani R. Exploring the acidic catalytic role of differently structured deep eutectic solvents in the aza-Michael addition of amines to 2-vinylpiridine. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02660-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Yuan X, Du H, Zhao J, Chima AE, Ma N, Tao M, Zhang W. Tuning Microenvironment of Quaternary Ammonium Salt and Tertiary Amine Bifunctionalized Polyacrylonitrile Fiber for Cooperatively Catalyzed Aza-Michael Addition. Catal Letters 2020. [DOI: 10.1007/s10562-020-03340-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Catalytic synthesis of thiazolidines by the reaction of Nef-isocyanide reaction. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04163-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Love D, Kim K, Domaille DW, Williams O, Stansbury J, Musgrave C, Bowman C. Catalyst-free, aza-Michael polymerization of hydrazides: polymerizability, kinetics, and mechanistic origin of an α-effect. Polym Chem 2019; 10:5790-5804. [PMID: 31749894 PMCID: PMC6865069 DOI: 10.1039/c9py01199d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the powerful nature of the aza-Michael reaction for generating C-N linkages and bioactive moieties, the bis-Michael addition of 1° amines remains ineffective for the synthesis of functional, step-growth polymers due to the drastic reduction in reactivity of the resulting 2° amine mono-addition adduct. In this study, a wide range of commercial hydrazides are shown to effectively undergo the bis-Michael reaction with divinyl sulfone (DVS) and 1,6-hexanediol diacrylate (HDA) under catalyst-free, thermal conditions to afford moderate to high molecular weight polymers with M n = 3.8-34.5 kg mol-1. The hydrazide-Michael reactions exhibit two distinctive, conversion-dependent kinetic regimes that are 2nd-order overall, in contrast to the 3rd-order nature of amines previously reported. The mono-addition rate constant was found to be 37-fold greater than that of the bis-addition at 80 °C for the reaction between benzhydrazide and DVS. A significant majority (12 of 15) of the hydrazide derivatives used here show excellent bis-Michael reactivity and achieve >97% conversions after 5 days. This behavior is consistent with calculations that show minimal variance of electron density on the N-nucleophile among the derivatives studied. Reactivity differences between hydrazides and hexylamine are also explored. Overall, the difference in reactivity between hydrazides and amines is attributed to the adjacent nitrogen atom in hydrazides that acts as an efficient hydrogen-bond donor that facilitates intramolecular proton-transfer following the formation of the zwitterion intermediate. This effect not only activates the Michael acceptor but also coordinates with additional Michael acceptors to form an intermolecular reactant complex.
Collapse
Affiliation(s)
- Dillon Love
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Kangmin Kim
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Dylan W. Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, USA
| | - Olivia Williams
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Jeffrey Stansbury
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, USA
- School of Dental Medicine, Craniofacial Biology, University of Colorado Denver, Aurora, Colorado 80045, USA
| | - Charles Musgrave
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Christopher Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, USA
| |
Collapse
|
16
|
Shigeno M, Nakamura R, Hayashi K, Nozawa-Kumada K, Kondo Y. Catalytic Amination of β-(Hetero)arylethyl Ethers by Phosphazene Base t-Bu-P4. Org Lett 2019; 21:6695-6699. [PMID: 31403305 DOI: 10.1021/acs.orglett.9b02309] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe the catalytic amination of β-(hetero)arylethyl ethers with amines using the organic superbase t-Bu-P4 to obtain β-(hetero)arylethylamines. The reaction has a broad substrate scope and allows the transformations of electron-deficient and electron-neutral β-(hetero)arylethyl ethers with various amines including pyrrole, N-alkylaniline, diphenylamine, aniline, indole, and indoline derivatives. Mechanistic studies indicate a two-reaction pathway of MeOH elimination from the substrate to form a (hetero)arylalkene followed by the hydroamination of the alkene.
Collapse
Affiliation(s)
- Masanori Shigeno
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai, 980-8578, Japan
| | - Ryutaro Nakamura
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai, 980-8578, Japan
| | - Kazutoshi Hayashi
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai, 980-8578, Japan
| | - Kanako Nozawa-Kumada
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai, 980-8578, Japan
| | - Yoshinori Kondo
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai, 980-8578, Japan
| |
Collapse
|
17
|
Kothandapani J, Ganesan SS. Concise Review on the Applications of Magnetically Separable Brønsted Acidic Catalysts. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190312152209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Magnetically separable Brønsted acidic catalysts combine the advantages of
high efficiency of homogeneous Brønsted acidic catalyst with the ease of magnetic
separation from the reaction medium. In addition to their ease of separation, the
magnetically separable Brønsted acidic catalysts also possess high stability towards air
and moisture, facile functionalization and tunable hydrophobic properties. This review
portrays the applications of sulfonic acid anchored γ -Fe2O3 or Fe3O4 nanoparticles,
magnetic core encapsulated acid functionalized silica or mesoporous nanoparticles,
functionalized ionic liquid coated acidic magnetically separable nanoparticles and
miscellaneous magnetically separable Brønsted acidic nanoparticles in diverse organic
transformations. In addition, the merits of magnetically separable Brønsted acid
nanocatalyst are also summarized and compared with the traditional homogeneous/heterogeneous Brønsted
acidic catalysts.
Collapse
Affiliation(s)
- Jagatheeswaran Kothandapani
- Department of Chemistry, School of Chemical and Biotechnology; SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Subramaniapillai S. Ganesan
- Department of Chemistry, School of Chemical and Biotechnology; SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| |
Collapse
|
18
|
Boruah K, Borah R. Design of Water Stable 1,3‐Dialkyl‐ 2‐Methyl Imidazolium Basic Ionic Liquids as Reusable Homogeneous Catalysts for Aza‐Michael Reaction in Neat Condition. ChemistrySelect 2019. [DOI: 10.1002/slct.201900187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kabita Boruah
- Department of Chemical SciencesTezpur University, Napaam- 784028 Tezpur India
| | - Ruli Borah
- Department of Chemical Sciences Tezpur University, Napaam- 784028 Tezpur India
| |
Collapse
|
19
|
Griffin SE, Pacheco J, Schafer LL. Reversible C–N Bond Formation in the Zirconium-Catalyzed Intermolecular Hydroamination of 2-Vinylpyridine. Organometallics 2019. [DOI: 10.1021/acs.organomet.8b00904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Samuel E. Griffin
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Javier Pacheco
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Laurel L. Schafer
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| |
Collapse
|
20
|
Vinogradov MG, Turova OV, Zlotin SG. Recent advances in the asymmetric synthesis of pharmacology-relevant nitrogen heterocycles via stereoselective aza-Michael reactions. Org Biomol Chem 2019; 17:3670-3708. [DOI: 10.1039/c8ob03034k] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this review, recent applications of a stereoselective aza-Michael reaction for asymmetric synthesis of naturally occurring N-containing heterocyclic scaffolds and their usefulness to pharmacology are summarized.
Collapse
Affiliation(s)
- Maxim G. Vinogradov
- N.D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- 119991 Moscow
- Russian Federation
| | - Olga V. Turova
- N.D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- 119991 Moscow
- Russian Federation
| | - Sergei G. Zlotin
- N.D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- 119991 Moscow
- Russian Federation
| |
Collapse
|
21
|
Rathod PB, Kumar KSA, Athawale AA, Pandey AK, Chattopadhyay S. Polymer-Shell-Encapsulated Magnetite Nanoparticles Bearing Hexamethylenetetramine for Catalysing Aza-Michael Addition Reactions. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Prakash B. Rathod
- Department of Chemistry; Savitribai Phule Pune University; -411007 Pune India
- Radiochemistry Division; Bhabha Atomic Research Centre; -400085 Trombay Mumbai India
| | - K. S. Ajish Kumar
- Bio-Organic Division; Bhabha Atomic Research Centre; -400085 Trombay Mumbai India
| | - Anjali A. Athawale
- Department of Chemistry; Savitribai Phule Pune University; -411007 Pune India
| | - Ashok K. Pandey
- Radiochemistry Division; Bhabha Atomic Research Centre; -400085 Trombay Mumbai India
- Homi Bhabha National Institute; TSH Complex -400094 Anushaktinagar Mumbai India
| | | |
Collapse
|
22
|
Beyki MH, Ghasemi MH. Quaternized γ-Fe2O3@cellulose ionomer: An efficient recyclable catalyst for Michael-type addition reaction. Int J Biol Macromol 2018. [DOI: 10.1016/j.ijbiomac.2018.03.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Li Z, Li J, Fu R, Xie D, Song G, Song W, Yang J. Regioselective Mono-aza-Michael Additions of Divinyl Ketones with Benzotriazole and Other N
-Heterocycles. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.2963] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zheng Li
- College of Chemistry and Chemical Engineering; Northwest Normal University; Lanzhou Gansu 730070 People's Republic of China
| | - Jiasheng Li
- College of Chemistry and Chemical Engineering; Northwest Normal University; Lanzhou Gansu 730070 People's Republic of China
| | - Rugang Fu
- College of Chemistry and Chemical Engineering; Northwest Normal University; Lanzhou Gansu 730070 People's Republic of China
| | - Demeng Xie
- College of Chemistry and Chemical Engineering; Northwest Normal University; Lanzhou Gansu 730070 People's Republic of China
| | - Geyang Song
- College of Chemistry and Chemical Engineering; Northwest Normal University; Lanzhou Gansu 730070 People's Republic of China
| | - Wenli Song
- College of Chemistry and Chemical Engineering; Northwest Normal University; Lanzhou Gansu 730070 People's Republic of China
| | - Jingya Yang
- College of Chemistry and Chemical Engineering; Northwest Normal University; Lanzhou Gansu 730070 People's Republic of China
| |
Collapse
|
24
|
Regioselective 1,4-conjugate aza-Michael addition of dienones with benzotriazole. HETEROCYCL COMMUN 2017. [DOI: 10.1515/hc-2016-0182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractThe regioselective 1,4-conjugate aza-Michael addition of dienones with benzotriazole catalyzed by potassium acetate is described. A series of 3-(benzotriazol-1-yl)-1,5-diarylpent-4-en-1-ones were efficiently synthesized under mild conditions. This protocol has advantages of transition-metal free catalyst, high yield and high regioselectivity.
Collapse
|
25
|
Ghasemi MH, Kowsari E. The catalytic effect of anion-exchanged supported ionic liquid on aza-Michael-type addition. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2840-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Convenient N-Alkylation of amines using an effective magnetically separable supported ionic liquid containing an anionic polyoxometalate. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2741-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|