1
|
Bando K, Kushibe R, Kitaoka N, Tamai Y, Narisawa K, Matsuura H. Isolation, structural elucidation, and biological activity of a novel isocoumarin from the dark septate endophytic fungus Phialocephala fortinii. Z NATURFORSCH C 2024; 79:89-92. [PMID: 38421614 DOI: 10.1515/znc-2023-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
A novel isocoumarin was isolated from the mycelia of the dark septate endophytic fungus Phialocephala fortinii. The chemical structure was determined to be 8-hydroxy-6-methoxy-3,7-dimethyl-1H-2-benzopyran-1-one based on mass spectrometry, 1H-nuclear magnetic resonance (NMR), and 13C-NMR spectroscopic analyses, including 2D-NMR experiments. The isolated compound inhibited root growth of Arabidopsis thaliana, suggesting its potential as a plant growth regulator.
Collapse
Affiliation(s)
- Kei Bando
- Research Faculty of Agriculture, 12810 Hokkaido University , Sapporo, Hokkaido, 060-8589, Japan
| | - Ryoga Kushibe
- Research Faculty of Agriculture, 12810 Hokkaido University , Sapporo, Hokkaido, 060-8589, Japan
| | - Naoki Kitaoka
- Research Faculty of Agriculture, 12810 Hokkaido University , Sapporo, Hokkaido, 060-8589, Japan
| | - Yutaka Tamai
- Research Faculty of Agriculture, 12810 Hokkaido University , Sapporo, Hokkaido, 060-8589, Japan
| | - Kazuhiko Narisawa
- Department of Bioresource Science, College of Agriculture, Ibaraki University, Ami, Inashiki, Ibaraki, 300-0393, Japan
| | - Hideyuki Matsuura
- Research Faculty of Agriculture, 12810 Hokkaido University , Sapporo, Hokkaido, 060-8589, Japan
| |
Collapse
|
2
|
Gao Y, Wang J, Meesakul P, Zhou J, Liu J, Liu S, Wang C, Cao S. Cytotoxic Compounds from Marine Fungi: Sources, Structures, and Bioactivity. Mar Drugs 2024; 22:70. [PMID: 38393041 PMCID: PMC10890532 DOI: 10.3390/md22020070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Marine fungi, such as species from the Penicillium and Aspergillus genera, are prolific producers of a diversity of natural products with cytotoxic properties. These fungi have been successfully isolated and identified from various marine sources, including sponges, coral, algae, mangroves, sediment, and seawater. The cytotoxic compounds derived from marine fungi can be categorized into five distinct classes: polyketides, peptides, terpenoids and sterols, hybrids, and other miscellaneous compounds. Notably, the pre-eminent group among these compounds comprises polyketides, accounting for 307 out of 642 identified compounds. Particularly, within this collection, 23 out of the 642 compounds exhibit remarkable cytotoxic potency, with IC50 values measured at the nanomolar (nM) or nanogram per milliliter (ng/mL) levels. This review elucidates the originating fungal strains, the sources of isolation, chemical structures, and the noteworthy antitumor activity of the 642 novel natural products isolated from marine fungi. The scope of this review encompasses the period from 1991 to 2023.
Collapse
Affiliation(s)
- Yukang Gao
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; (Y.G.); (J.W.); (J.Z.); (J.L.); (S.L.)
| | - Jianjian Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; (Y.G.); (J.W.); (J.Z.); (J.L.); (S.L.)
| | - Pornphimon Meesakul
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo, HI 96720, USA;
| | - Jiamin Zhou
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; (Y.G.); (J.W.); (J.Z.); (J.L.); (S.L.)
| | - Jinyan Liu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; (Y.G.); (J.W.); (J.Z.); (J.L.); (S.L.)
| | - Shuo Liu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; (Y.G.); (J.W.); (J.Z.); (J.L.); (S.L.)
| | - Cong Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; (Y.G.); (J.W.); (J.Z.); (J.L.); (S.L.)
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo, HI 96720, USA;
| |
Collapse
|
3
|
Dubovik V, Dalinova A, Berestetskiy A. Natural ten-membered lactones: sources, structural diversity, biological activity, and intriguing future. Nat Prod Rep 2024; 41:85-112. [PMID: 37885339 DOI: 10.1039/d3np00013c] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Covering: 2012 to 2022Ten-membered lactones (TMLs) are an interesting and diverse group of natural polyketides that are abundant in fungi and, to a lesser extent, in bacteria, marine organisms, and insects. TMLs are known for their ability to exhibit a wide spectrum of biological activity, including phytotoxic, cytotoxic, antifungal, antibacterial, and others. However, the random discovery of these compounds by scientific groups with various interests worldwide has resulted in patchy information about their distribution among different organisms and their biological activity. Therefore, despite more than 60 years of research history, there is still no common understanding of the natural sources of TMLs, their structural type classification, and most characteristic biological activities. The controversial nomenclature, incorrect or erroneous structure elucidation, poor identification of producing organisms, and scattered information on the biological activity of compounds - all these factors have led to the problems with dereplication and the directed search for TMLs. This review consists of two parts: the first part (Section 2) covers 104 natural TMLs, published between 2012 and 2022 (after the publishing of the previous review), and the second part (Section 3) summarizes information about 214 TMLs described during 1964-2022 and as a result highlights the main problems and trends in the study of these intriguing natural products.
Collapse
Affiliation(s)
- Vsevolod Dubovik
- Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Pushkin, 196608 Saint-Petersburg, Russia.
| | - Anna Dalinova
- Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Pushkin, 196608 Saint-Petersburg, Russia.
| | - Alexander Berestetskiy
- Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Pushkin, 196608 Saint-Petersburg, Russia.
| |
Collapse
|
4
|
Yu J, Liu X, Ma C, Li C, Zhang Y, Che Q, Zhang G, Zhu T, Li D. Activation of a Silent Polyketide Synthase SlPKS4 Encoding the C 7-Methylated Isocoumarin in a Marine-Derived Fungus Simplicillium lamellicola HDN13-430. Mar Drugs 2023; 21:490. [PMID: 37755103 PMCID: PMC10532586 DOI: 10.3390/md21090490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
Coumarins, isocoumarins and their derivatives are polyketides abundant in fungal metabolites. Although they were first discovered over 50 years ago, the biosynthetic process is still not entirely understood. Herein, we report the activation of a silent nonreducing polyketide synthase that encodes a C7-methylated isocoumarin, similanpyrone B (1), in a marine-derived fungus Simplicillium lamellicola HDN13-430 by heterologous expression. Feeding studies revealed the host enzymes can change 1 into its hydroxylated derivatives pestapyrone A (2). Compounds 1 and 2 showed moderate radical scavenging activities with ED50 values of 67.4 µM and 104.2 µM. Our discovery fills the gap in the enzymatic elucidation of naturally occurring C7-methylated isocoumarin derivatives.
Collapse
Affiliation(s)
- Jing Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.Y.); (X.L.); (C.M.); (C.L.); (Q.C.); (G.Z.)
| | - Xiaolin Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.Y.); (X.L.); (C.M.); (C.L.); (Q.C.); (G.Z.)
| | - Chuanteng Ma
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.Y.); (X.L.); (C.M.); (C.L.); (Q.C.); (G.Z.)
| | - Chen Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.Y.); (X.L.); (C.M.); (C.L.); (Q.C.); (G.Z.)
| | - Yuhan Zhang
- School of Pharmaceutical Science, Shandong University, Jinan 250100, China;
| | - Qian Che
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.Y.); (X.L.); (C.M.); (C.L.); (Q.C.); (G.Z.)
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.Y.); (X.L.); (C.M.); (C.L.); (Q.C.); (G.Z.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.Y.); (X.L.); (C.M.); (C.L.); (Q.C.); (G.Z.)
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.Y.); (X.L.); (C.M.); (C.L.); (Q.C.); (G.Z.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
5
|
Jiang P, Fu X, Niu H, Chen S, Liu F, Luo Y, Zhang D, Lei H. Recent advances on Pestalotiopsis genus: chemistry, biological activities, structure-activity relationship, and biosynthesis. Arch Pharm Res 2023:10.1007/s12272-023-01453-2. [PMID: 37389739 DOI: 10.1007/s12272-023-01453-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
Strains of the fungal genus Pestalotiopsis are reported as large promising sources of structurally varied biologically active metabolites. Many bioactive secondary metabolites with diverse structural features have been derived from Pestalotiopsis. Moreover, some of these compounds can potentially be developed into lead compounds. Herein, we have systematically reviewed the chemical constituents and bioactivities of the fungal genus Pestalotiopsis, covering a period ranging from January 2016 to December 2022. As many as 307 compounds, including terpenoids, coumarins, lactones, polyketides, and alkaloids, were isolated during this period. Furthermore, for the benefit of readers, the biosynthesis and potential medicinal value of these new compounds are also discussed in this review. Finally, the perspectives and directions for future research and the potential applications of the new compounds are summarized in various tables.
Collapse
Affiliation(s)
- Peng Jiang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Xiujuan Fu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hong Niu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Siwei Chen
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Feifei Liu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China
| | - Yu Luo
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Dan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Hui Lei
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
6
|
Species of the Genera Neopestalotiopsis and Alternaria as Dominant Pathogen Species Attacking Mastic Trees (Pistacia lentiscus var. Chia). MICROBIOLOGY RESEARCH 2023. [DOI: 10.3390/microbiolres14010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Between 2018 and 2021, several mastic trees (Pistacia lentiscus var. Chia) sampled in the field and the nursery of the Chios Mastiha Growers Association (CMGA) were analyzed to determine the cause of dominant diseases. Symptoms included defoliation, leaf, and twig blight, wilting and/or apoplexy of trees and apoplexy of young hardwood cuttings. Moreover, brown discoloration had also been observed on older woody parts of the trees such as branches and tree trunks. Several pathogens have been isolated and identified as the causing agents. Neopestalotiopsis and Alternaria species were isolated consistently from necrotic tissues of mastic trees (branches, twigs, and leaves) in the field and the nursery. All fungal isolates’ pathogenicity was confirmed by applying Koch’s postulates on young mastic trees under glasshouse conditions. Fungal pathogens were identified by sequence analyses of the ITS, β-tubulin, and histone gene regions. Alternaria species were analyzed further by sequencing the endopolygalacturonase (endoPG) and the Alternaria major allergen (Alta1) genes. More specifically, the isolates were identified as Neopestalotiopsis clavispora, Alternaria arborescens, and A. alternata based on morphological features and sequence analyses. This is the first report of N. clavispora, A. arborescens, and A. alternata on P. lentiscus var. Chia.
Collapse
|
7
|
A Review on Medicinal Plants Having Anticancer Properties of Northeast India and Associated Endophytic Microbes and their Future in Medicinal Science. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human beings are affected by different diseases and suffer to different extents. Cancer is one of the major human disease and millions of people suffered from cancer and end their lives every year. Peoples are dependent on herbal medicines since prehistoric time especially from developing countries. It is very common to have different side effects of modern synthetic medicines; hence now-a-days importance of herbal medicines due to no or least side effects increases all parts of the world. But the major problems of using herbal medicines are that plants can produce very limited amount of medicinally important bioactive metabolites and they have very long growth periods. Therefore endophytes are the excellent alternative of plant derived metabolites. Endophytic microbes can synthesize exactly same type of metabolites as the plant produces. North East India is a treasure of plant resources; various types of medicinal plants are present in this region. Different types of indigenous tribes are inhabited in this region who used different plants in traditional system for treating various disease. But with increasing demand it is sometimes not sufficient to manage the demand of medicines, therefore for massive production endophytic study is crucial. In spite of having huge plant resources very limited endophytic studies are observed in this region. In this review, we studied different plants with their endophytes of NE India showing anticancer properties.
Collapse
|
8
|
Sugumaran A, Pandiyan R, Kandasamy P, Antoniraj MG, Navabshan I, Sakthivel B, Dharmaraj S, Chinnaiyan SK, Ashokkumar V, Ngamcharussrivichai C. Marine biome-derived secondary metabolites, a class of promising antineoplastic agents: A systematic review on their classification, mechanism of action and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155445. [PMID: 35490806 DOI: 10.1016/j.scitotenv.2022.155445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/10/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Cancer is one of the most deadly diseases on the planet. Over the past decades, numerous antineoplastic compounds have been discovered from natural resources such as medicinal plants and marine species as part of multiple drug discovery initiatives. Notably, several marine flora (e.g. Ascophyllum nodosum, Sargassum thunbergii) have been identified as a rich source for novel cytotoxic compounds of different chemical forms. Despite the availability of enormous chemically enhanced new resources, the anticancer potential of marine flora and fauna has received little attention. Interestingly, numerous marine-derived secondary metabolites (e.g., Cytarabine, Trabectedin) have exhibited anticancer effects in preclinical cancer models. Most of the anticancer drugs obtained from marine sources stimulated apoptotic signal transduction pathways in cancer cells, such as the intrinsic and extrinsic pathways. This review highlights the sources of different cytotoxic secondary metabolites obtained from marine bacteria, algae, fungi, invertebrates, and vertebrates. Furthermore, this review provides a comprehensive overview of the utilisation of numerous marine-derived cytotoxic compounds as anticancer drugs, as well as their modes of action (e.g., molecular target). Finally, it also discusses the future prospects of marine-derived drug developments and their constraints.
Collapse
Affiliation(s)
- Abimanyu Sugumaran
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Rajesh Pandiyan
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai 600073, India
| | - Palanivel Kandasamy
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, Inselspital, University of Bern, Bern, Switzerland; Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Mariya Gover Antoniraj
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Science, Ben-Gurion University of Negev, Israel
| | - Irfan Navabshan
- Crescent School of Pharmacy, B.S. Abdur Rahman Cresent Institute of Science and Technology, Chennai, India
| | | | - Selvakumar Dharmaraj
- Department of Marine Biotechnology, Academy of Maritime Education and Training [AMET] (Deemed to be University), Chennai 603112, Tamil Nadu, India
| | - Santhosh Kumar Chinnaiyan
- Department of Pharmaceutics, Srikrupa Institute of Pharmaceutical Sciences, Velikatta, Kondapak, Siddipet, Telangana State 502277, India.
| | - Veeramuthu Ashokkumar
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India; Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand.
| | - Chawalit Ngamcharussrivichai
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand
| |
Collapse
|
9
|
Wei X, Zeng Y, Sun C, Meng F, Wang Y. Recent advances in natural phthalides: Distribution, chemistry, and biological activities. Fitoterapia 2022; 160:105223. [PMID: 35654379 DOI: 10.1016/j.fitote.2022.105223] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 11/04/2022]
Abstract
Phthalides, an important class of bioactive natural products, are widely distributed in plants, fungi, lichens, and liverworts. Amon them, n-butylphthalide, a phthalide monomer, has been approved to cure ischemic stroke. Owing to their good bioactivities in anti-microbial, anti-inflammatory, anti-tumor, anti-diabetic, and other aspects, a large number of researches have been conducted on phthalides from nature materials. In recent years, hundreds of novel natural phthalides were obtained. This review provides profiles of the advances in the distribution, chemistry, and biological activities of natural phthalides in 2016-2022.
Collapse
Affiliation(s)
- Xiaodong Wei
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui 741001, PR China.
| | - Yanping Zeng
- College of Pharmaceutical Sciences, Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), Southwest University, Chongqing 400715, PR China
| | - Chao Sun
- Shandong Academy of Pharmaceutical Sciences, Ji'nan 250101, PR China
| | - Fancheng Meng
- College of Pharmaceutical Sciences, Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), Southwest University, Chongqing 400715, PR China
| | - Yibo Wang
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui 741001, PR China
| |
Collapse
|
10
|
Chen S, Cai R, Liu Z, Cui H, She Z. Secondary metabolites from mangrove-associated fungi: source, chemistry and bioactivities. Nat Prod Rep 2021; 39:560-595. [PMID: 34623363 DOI: 10.1039/d1np00041a] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Covering 1989 to 2020The mangrove forests are a complex ecosystem occurring at tropical and subtropical intertidal estuarine zones and nourish a diverse group of microorganisms including fungi, actinomycetes, bacteria, cyanobacteria, algae, and protozoa. Among the mangrove microbial community, mangrove associated fungi, as the second-largest ecological group of the marine fungi, not only play an essential role in creating and maintaining this biosphere but also represent a rich source of structurally unique and diverse bioactive secondary metabolites, attracting significant attention of organic chemists and pharmacologists. This review summarizes the discovery relating to the source and characteristics of metabolic products isolated from mangrove-associated fungi over the past thirty years (1989-2020). Its emphasis included 1387 new metabolites from 451 papers, focusing on bioactivity and the unique chemical diversity of these natural products.
Collapse
Affiliation(s)
- Senhua Chen
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China. .,School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Runlin Cai
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China. .,College of Science, Shantou University, Shantou 515063, China
| | - Zhaoming Liu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China. .,State Key Laboratory of Applied Microbiology Southern China, Guangdong Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hui Cui
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China. .,School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhigang She
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
11
|
Biological potential of bioactive metabolites derived from fungal endophytes associated with medicinal plants. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01695-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Structurally diverse polyketides and phenylspirodrimanes from the soft coral-associated fungus Stachybotrys chartarum SCSIO41201. J Antibiot (Tokyo) 2020; 74:190-198. [PMID: 33318621 DOI: 10.1038/s41429-020-00386-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 11/08/2022]
Abstract
Four undescribed polyketide derivatives, named arthproliferins A-D (1-4), and one undescribed phenylspirodrimane derivative, named arthproliferin E (7), along with 11 known metabolites (5, 6, 8-16) were isolated from the soft coral-associated fungus Stachybotrys chartarum SCSIO41201. Their structures were determined through spectroscopic methods, X-ray crystallography, and ECD analysis. Compounds 1 and 3-15 were evaluated for their cytotoxic, and antibacterial activities. Among them, compounds 1 and 15 displayed moderate inhibitory activity against methicillin-resistant Staphylococcus aureus ATCC 29213 with an MIC value of 78 and 39 µg/mL, respectively. Furthermore, compound 15 displayed strong cytotoxic activities against the tested cell line with IC50 values less than 39 nM.
Collapse
|
13
|
Xie J, Wei JG, Wang KW, Luo J, Wu YJ, Luo JT, Yang XH, Yang XB. Three phytotoxins produced by Neopestalotiopsis clavispora, the causal agent of ring spot on Kadsura coccinea. Microbiol Res 2020; 238:126531. [PMID: 32603933 DOI: 10.1016/j.micres.2020.126531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/29/2020] [Accepted: 06/13/2020] [Indexed: 01/12/2023]
Abstract
Phytotoxins are widely found in plant pathogens. In recent years, many diseases caused by Neopestalotiopsis clavispora have been reported. To better understand the pathogenicity of N. clavispora, a solid fermentation strategy was employed to isolate and identify virulence factors afritoxinone B, afritoxinone A and oxysporone. The phytotoxic activities of these toxins were evaluated. Oxysporone exhibited high levels of phytotoxic activity after 72 h and the lesion area ranged from 21.5-84.3 mm2 after 9 days of treatment. The phytotoxic activities of the other two compounds were lower than that for oxysporone. The phytotoxic activity towards non-host organisms was also assessed for the three analyzed compounds; phytotoxic activity was observed in each case. Based on these results, we conclude that oxysporone is the main virulence factor in N. clavispora. We also suggest that each of the three compounds were non-host-specific toxins (NHST). To our knowledge, this is the first study to analyze phytotoxins produced by N. clavispora.
Collapse
Affiliation(s)
- J Xie
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - J G Wei
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China.
| | - K W Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - J Luo
- Guangxi Academy of Forestry Sciences, Nanning, Guangxi, 530002, China
| | - Y J Wu
- Guangxi Academy of Forestry Sciences, Nanning, Guangxi, 530002, China
| | - J T Luo
- Guangxi Forest Pest Management Station, Nanning, Guangxi, 530028, China
| | - X H Yang
- Guangxi Forest Pest Management Station, Nanning, Guangxi, 530028, China
| | - X B Yang
- Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
14
|
Capon RJ. Extracting value: mechanistic insights into the formation of natural product artifacts – case studies in marine natural products. Nat Prod Rep 2020; 37:55-79. [DOI: 10.1039/c9np00013e] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review highlights the importance of valuing natural product handling artifacts, to open a new window into, and provide a unique perspective of, bioactive chemical space.
Collapse
Affiliation(s)
- Robert J. Capon
- Division of Chemistry and Structural Biology
- Institute for Molecular Bioscience
- The University of Queensland
- St Lucia
- Australia
| |
Collapse
|
15
|
Lei H, Lei J, Zhou X, Hu M, Niu H, Song C, Chen S, Liu Y, Zhang D. Cytotoxic Polyketides from the Marine Sponge-Derived Fungus Pestalotiopsis heterocornis XWS03F09. Molecules 2019; 24:molecules24142655. [PMID: 31336683 PMCID: PMC6680542 DOI: 10.3390/molecules24142655] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/10/2019] [Accepted: 07/17/2019] [Indexed: 11/16/2022] Open
Abstract
Four new compounds, including two new polyketides, heterocornols M and N (1, 2), and a pair of epimers, heterocornols O and P (3, 4), were isolated from the fermentation broth of the marine sponge-derived fungus Pestalotiopsis heterocornis XWS03F09, together with three known compounds (5-7). The new chemical structures were established on the basis of a spectroscopic analysis, optical rotation, experimental and calculated electronic circular dichroism (ECD). All of the compounds (1-7) were evaluated for their cytotoxic activities, and heterocornols M-P (1-4) exhibited cytotoxicities against four human cancer cell lines with IC50 values of 20.4-94.2 μM.
Collapse
Affiliation(s)
- Hui Lei
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jing Lei
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Mei Hu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Hong Niu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Can Song
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Siwei Chen
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Dan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
16
|
Lee JY, Kim GJ, Choi JK, Choi YA, Jeong NH, Park PH, Choi H, Kim SH. 4-(Hydroxymethyl)catechol Extracted From Fungi in Marine Sponges Attenuates Rheumatoid Arthritis by Inhibiting PI3K/Akt/NF-κB Signaling. Front Pharmacol 2018; 9:726. [PMID: 30079020 PMCID: PMC6062625 DOI: 10.3389/fphar.2018.00726] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/15/2018] [Indexed: 12/18/2022] Open
Abstract
Rheumatoid arthritis (RA) is a progressive autoimmune disease specific to synovial joints; it causes joint damage and other systemic abnormalities, thereby leading to physical disability and early mortality. Marine sponge-derived fungi, Pestalotiopsis sp., secrete immunosuppressive compounds in the culture broth. In the present study, we isolated 4-(hydroxymethyl)catechol (4-HMC) from these fungal species, and evaluated its anti-RA effects using a murine collagen-induced arthritis model and tumor necrosis factor-α-stimulated human RA synovial fibroblasts. Oral 4-HMC administration decreased the clinical arthritis score, paw thickness, histologic and radiologic changes, and serum IgG1 and IgG2a levels. It prevented the proliferation of helper T (Th) 1/Th17 CD4+ lymphocytes isolated from inguinal lymph nodes, thereby reducing inflammatory cytokine production in CIA mice. It decreased the expression of inflammatory mediators, including cytokines and matrix metalloproteinases (MMPs), both in vitro and in vivo. We observed that 4-HMC suppresses Th immune responses and MMP expression to inhibit inflammatory cytokine production in human RA synovial fibroblasts by modulating the PI3K/Akt/NF-κB pathway. These results verify the anti-RA potential of 4-HMC.
Collapse
Affiliation(s)
- Jong Y Lee
- Department of Pharmacology, School of Medicine, CMRI, Kyungpook National University, Daegu, South Korea
| | - Geum J Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Jin K Choi
- Department of Pharmacology, School of Medicine, CMRI, Kyungpook National University, Daegu, South Korea.,Molecular Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Young-Ae Choi
- Department of Pharmacology, School of Medicine, CMRI, Kyungpook National University, Daegu, South Korea
| | - Na-Hee Jeong
- Department of Pharmacology, School of Medicine, CMRI, Kyungpook National University, Daegu, South Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Sang-Hyun Kim
- Department of Pharmacology, School of Medicine, CMRI, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
17
|
Li SJ, Zhang X, Wang XH, Zhao CQ. Novel natural compounds from endophytic fungi with anticancer activity. Eur J Med Chem 2018; 156:316-343. [PMID: 30015071 DOI: 10.1016/j.ejmech.2018.07.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 11/30/2022]
Abstract
Plant endophytes are microorganisms that live in healthy plant tissues in part or all of their life history without causing obvious symptoms of infection in the host plants. Endophytes, a new type of microbial resource that can produce a variety of biological constituents, have great values for research and broad prospects for development. This article reviewed the research and development progress of endophytic fungi with cytotoxic activity between 2014 and 2017, including endophytic fungi sources, microbial taxonomy, compound classification and cytotoxic activity. The results showed that the 109 strains of endophytic fungi belong to 3 phyla, 7 classes and 50 genera. The secondary metabolites mainly contained alkaloids, terpenes, steroids, polyketides, quinones, isocoumarins, esters etc. The results of this study provide references for the development of new antitumor drugs and endophytes resources.
Collapse
Affiliation(s)
- Shou-Jie Li
- Beijing Key Laboratory of Gene Engineering Drugs & Biological Technology, College of Life Science, Beijing Normal University, Beijing, 100875, PR China
| | - Xuan Zhang
- Beijing Key Laboratory of Gene Engineering Drugs & Biological Technology, College of Life Science, Beijing Normal University, Beijing, 100875, PR China
| | - Xiang-Hua Wang
- Beijing Key Laboratory of Gene Engineering Drugs & Biological Technology, College of Life Science, Beijing Normal University, Beijing, 100875, PR China
| | - Chang-Qi Zhao
- Beijing Key Laboratory of Gene Engineering Drugs & Biological Technology, College of Life Science, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
18
|
Liu Y, Kurtán T, Mándi A, Weber H, Wang C, Hartmann R, Lin W, Daletos G, Proksch P. A novel 10-membered macrocyclic lactone from the mangrove-derived endophytic fungus Annulohypoxylon sp. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
Abstract
Covering: 2016. Previous review: Nat. Prod. Rep., 2017, 34, 235-294This review covers the literature published in 2016 for marine natural products (MNPs), with 757 citations (643 for the period January to December 2016) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1277 in 432 papers for 2016), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | | | | | | | | | | |
Collapse
|
20
|
Deshmukh SK, Prakash V, Ranjan N. Marine Fungi: A Source of Potential Anticancer Compounds. Front Microbiol 2018; 8:2536. [PMID: 29354097 PMCID: PMC5760561 DOI: 10.3389/fmicb.2017.02536] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 12/06/2017] [Indexed: 11/13/2022] Open
Abstract
Metabolites from marine fungi have hogged the limelight in drug discovery because of their promise as therapeutic agents. A number of metabolites related to marine fungi have been discovered from various sources which are known to possess a range of activities as antibacterial, antiviral and anticancer agents. Although, over a thousand marine fungi based metabolites have already been reported, none of them have reached the market yet which could partly be related to non-comprehensive screening approaches and lack of sustained lead optimization. The origin of these marine fungal metabolites is varied as their habitats have been reported from various sources such as sponge, algae, mangrove derived fungi, and fungi from bottom sediments. The importance of these natural compounds is based on their cytotoxicity and related activities that emanate from the diversity in their chemical structures and functional groups present on them. This review covers the majority of anticancer compounds isolated from marine fungi during 2012-2016 against specific cancer cell lines.
Collapse
Affiliation(s)
- Sunil K. Deshmukh
- TERI–Deakin Nano Biotechnology Centre, The Energy and Resources Institute, New Delhi, India
| | - Ved Prakash
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| | - Nihar Ranjan
- TERI–Deakin Nano Biotechnology Centre, The Energy and Resources Institute, New Delhi, India
| |
Collapse
|
21
|
Wang Z, Fan P, Xue TD, Meng LL, Gao WB, Zhang J, Zhao YX, Luo DQ. Two New Isocoumarin Derivatives from an Endophytic Fungi Pestalotiopsis coffeae Isolated from a Mangrove Fishtail Palm. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Two new isocoumarin derivatives, 6,8-dihydroxy-7-methyl-1-oxo-1H-isochromene-3-carboxylic acid (1) and 6,8-dihydroxy-3-methoxy-3,7- dimethyl-isochroman-1-one (2), together with five known compounds (3-7), were isolated from the endophytic fungus Pestalotiopsis coffeae derived from the Chinese plant fishtail palm. The structures of these compounds were determined mainly by analysis of their NMR spectroscopic data. The structure of compound 2 was further confirmed by X-ray diffraction.
Collapse
Affiliation(s)
- Zhong Wang
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| | - Peng Fan
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| | - Tong-Dan Xue
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| | - Lin-Lin Meng
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| | - Wen-Bin Gao
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| | - Jun Zhang
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| | - You-xing Zhao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Du-Qiang Luo
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| |
Collapse
|
22
|
Li C, Sarotti AM, Yoshida W, Cao S. Two new polyketides from Hawaiian endophytic fungus Pestalotiopsis sp. FT172. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2017.11.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Song RY, Wang XB, Yin GP, Liu RH, Kong LY, Yang MH. Isocoumarin derivatives from the endophytic fungus, Pestalotiopsis sp. Fitoterapia 2017; 122:115-118. [DOI: 10.1016/j.fitote.2017.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/19/2017] [Accepted: 08/21/2017] [Indexed: 10/19/2022]
|
24
|
Isobenzofuranones and Isochromenones from the Deep-Sea Derived Fungus Leptosphaeria sp. SCSIO 41005. Mar Drugs 2017. [DOI: 10.3390/md15070204 pmid: 28661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
25
|
Luo X, Lin X, Salendra L, Pang X, Dai Y, Yang B, Liu J, Wang J, Zhou X, Liu Y. Isobenzofuranones and Isochromenones from the Deep-Sea Derived Fungus Leptosphaeria sp. SCSIO 41005. Mar Drugs 2017; 15:md15070204. [PMID: 28661451 PMCID: PMC5532646 DOI: 10.3390/md15070204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 12/16/2022] Open
Abstract
Four new isobenzofuranones, leptosphaerins J–M (1–4), including an unusual naturally-occurring centrosymmetric dimer skeleton (1), and two new isochromenones, clearanols I–J (9–10), were obtained from a culture of a deep-sea sediment-derived fungus Leptosphaeria sp. SCSIO 41005, together with four known isobenzofuranones (5–8) and six known isochromenones (11–16). These structures were elucidated by extensive spectroscopic analyses, and absolute configurations were assigned on the basis of electronic circular dichroism and optical rotations data comparison. Additionally, the absolute configurations of the new compounds 1 and 9, together with the known one 7 with stereochemistry undetermined, were further confirmed by single crystal X-ray diffraction experiments. A plausible biosynthetic pathway of these isobenzofuranones and isochromenones was also proposed.
Collapse
Affiliation(s)
- Xiaowei Luo
- Chinese Academy of Sciences (CAS) Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, CAS, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiuping Lin
- Chinese Academy of Sciences (CAS) Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, CAS, Guangzhou 510301, China.
| | - Limbadri Salendra
- Chinese Academy of Sciences (CAS) Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, CAS, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaoyan Pang
- Chinese Academy of Sciences (CAS) Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, CAS, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yu Dai
- Chinese Academy of Sciences (CAS) Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, CAS, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Bin Yang
- Chinese Academy of Sciences (CAS) Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, CAS, Guangzhou 510301, China.
| | - Juan Liu
- Chinese Academy of Sciences (CAS) Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, CAS, Guangzhou 510301, China.
| | - Junfeng Wang
- Chinese Academy of Sciences (CAS) Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, CAS, Guangzhou 510301, China.
| | - Xuefeng Zhou
- Chinese Academy of Sciences (CAS) Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, CAS, Guangzhou 510301, China.
| | - Yonghong Liu
- Chinese Academy of Sciences (CAS) Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, CAS, Guangzhou 510301, China.
| |
Collapse
|
26
|
Hemphill CFP, Sureechatchaiyan P, Kassack MU, Orfali RS, Lin W, Daletos G, Proksch P. OSMAC approach leads to new fusarielin metabolites from Fusarium tricinctum. J Antibiot (Tokyo) 2017; 70:726-732. [PMID: 28270687 DOI: 10.1038/ja.2017.21] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/08/2017] [Accepted: 01/23/2017] [Indexed: 12/12/2022]
Abstract
Using the OSMAC (One Strain MAny Compounds) approach, the fungal endophyte Fusarium tricinctum was cultivated on fruit and vegetable juice-supplemented solid rice media. This led to an up to 80-fold increase in the accumulation of the new natural product fusarielin J (1), as well as to the induction of two new natural products fusarielin K (2) and fusarielin L (3) and the known derivatives fusarielins A (4) and B (5). Compounds 2-5 were not detected when the fungus was grown on rice media lacking either fruit or vegetable juice. The highest increase in the accumulation of compound 1 was observed in the presence of apple and carrot juice, whereas the stimulating effect was weaker for banana juice. Compound 1 exhibited cytotoxicity against the human ovarian cancer cell line A2780, with an IC50 value of 12.5 μM.
Collapse
Affiliation(s)
- Catalina F Pérez Hemphill
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Parichat Sureechatchaiyan
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Duesseldorf, Germany
| | - Matthias U Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Duesseldorf, Germany
| | - Raha S Orfali
- Pharmacognosy Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, People's Republic of China
| | - Georgios Daletos
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
27
|
Pyran Rings Containing Polyketides from Penicillium raistrickii. Mar Drugs 2016; 15:md15010002. [PMID: 28025533 PMCID: PMC5295222 DOI: 10.3390/md15010002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 11/22/2022] Open
Abstract
Five new pyran rings containing polyketides, penicipyrans A–E (1–5), together with the known pestapyrone A (6), were isolated from the saline soil-derived Penicillium raistrickii. Their structures were determined by interpretation of NMR and HRESIMS data. The absolute configurations of compounds 4 and 5 were established by the modified Mosher’s method and single-crystal X-ray diffraction analysis, respectively. These compounds possessed high structural diversity including two α-pyrones (1, 2), three isocoumarins (3, 4, 6), and one dihydropyran derivative (5). Among them, Compound 5 exhibited cytotoxicity against HL-60 and K562 cell lines with IC50 values of 4.4 and 8.5 μM, respectively.
Collapse
|