1
|
Zhu FM, Pu JJ, Zhang ZQ, Zhan ZP. Base promoted regio- and stereoselective hydrophosphinylation of allenes. Org Biomol Chem 2025; 23:931-934. [PMID: 39660981 DOI: 10.1039/d4ob01845a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
A novel and transition-metal-free hydrophosphinylation of allenes with secondary phosphine oxides was developed. In the presence of the cheap and commercially available cesium carbonate, various hydrophosphinylation products were synthesized with exclusive regio- and stereoselectivity under mild conditions. This methodology provides simple and efficient access to (E)-alkenylphosphine oxides in moderate to excellent yields with a relatively broad substrate scope.
Collapse
Affiliation(s)
- Fei-Min Zhu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361001, Fujian, People's Republic of China.
| | - Jia-Jie Pu
- Gulei Innovation Institute, Xiamen University, Zhangzhou 363100, Fujian, People's Republic of China
| | - Zhen-Qiang Zhang
- Yunnan Precious Metals Laboratory Company, Ltd., Kunming 650106, Yunnan, People's Republic of China.
| | - Zhuang-Ping Zhan
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361001, Fujian, People's Republic of China.
- Gulei Innovation Institute, Xiamen University, Zhangzhou 363100, Fujian, People's Republic of China
| |
Collapse
|
2
|
Hirota E, Hirashima SI, Morita R, Takase J, Matsushima Y, Nakashima K, Akutsu H, Miura T. Regioselective One-Pot Synthesis of Vicinal Bisphosphine Derivatives from Nitroalkenes by Hydrophosphinylation/Elimination/Hydrophosphinylation. Org Lett 2024; 26:1797-1802. [PMID: 38393857 DOI: 10.1021/acs.orglett.3c04297] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Herein, a facile method is developed for the synthesis of vicinal bisphosphine derivatives based on a cascade of hydrophosphinylation, elimination, and hydrophosphinylation of secondary phosphine oxides with nitroalkenes. This cascade reaction provides step-economy access to a series of vicinal bisphosphine derivatives with high to excellent yields (up to 99%). This method was further extended to prepare, in one-pot, regioselective vicinal bisphosphine derivatives that incorporated two different phosphorus functional groups.
Collapse
Affiliation(s)
- Eiki Hirota
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Shin-Ichi Hirashima
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Ryuki Morita
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Junya Takase
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yasuyuki Matsushima
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kosuke Nakashima
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hiroshi Akutsu
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Tsuyoshi Miura
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
3
|
Adjei JA, Kerr MA, Ragogna PJ. UV induced hydrophosphination of dimethyl 2-vinylcyclopropane-1,1-dicarboxylate towards phosphine chalcogenides. Dalton Trans 2023; 52:6739-6748. [PMID: 37129227 DOI: 10.1039/d3dt00791j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Dimethyl 2-vinylcyclopropane-1,1-dicarboxylate underwent a hydrophosphination reaction with either a primary or secondary phosphine under photolytic conditions. Notably, a free radical initiator was not required. The resulting tertiary phosphines were derivatized using S8 to afford moisture and air stable yellow or colorless oils in a 27%-73% isolated yield. A series of control reactions were performed, and we propose that this UV induced hydrophosphination reaction proceeds through a radical mechanism.
Collapse
Affiliation(s)
- Jeanette A Adjei
- The University of Western Ontario, Department of Chemistry, UWO Chemistry Building, 1151 Richmond Street, London, ON N6A, Canada.
| | - Michael A Kerr
- The University of Western Ontario, Department of Chemistry, UWO Chemistry Building, 1151 Richmond Street, London, ON N6A, Canada.
| | - Paul J Ragogna
- The University of Western Ontario, Department of Chemistry, UWO Chemistry Building, 1151 Richmond Street, London, ON N6A, Canada.
| |
Collapse
|
4
|
Yamamoto Y, Fujiwara K, Ogawa A. Palladium-Catalyzed Hydrophosphination of Terminal Alkynes with Diphenylphosphine Oxide in the Presence of Tetraphenyldiphosphine Monoxide. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Yuki Yamamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Kohsuke Fujiwara
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Akiya Ogawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
5
|
Il'in AV, Khayarov KR, Anisimova KS, Islamov DR, Kuchaev ES. Phosphine‐Catalyzed α‐ and Vicinal Bis‐Addition of P(O)H Compounds to Alkynoates. ChemistrySelect 2023. [DOI: 10.1002/slct.202204002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Anton V. Il'in
- A. M. Butlerov Institute of Chemistry Kazan Federal University 29 Kremlevskaya St. Kazan 420008 Russia
| | - Khasan R. Khayarov
- A. M. Butlerov Institute of Chemistry Kazan Federal University 29 Kremlevskaya St. Kazan 420008 Russia
| | - Kristina S. Anisimova
- A. M. Butlerov Institute of Chemistry Kazan Federal University 29 Kremlevskaya St. Kazan 420008 Russia
| | - Daut R. Islamov
- Laboratory for structural analysis of biomacromolecules Kazan Scientific Center of Russian Academy of Sciences Lobachevsky str., 2/31 Kazan 420111 Russia
| | - Evgenii S. Kuchaev
- Laboratory for structural analysis of biomacromolecules Kazan Scientific Center of Russian Academy of Sciences Lobachevsky str., 2/31 Kazan 420111 Russia
| |
Collapse
|
6
|
Lotsman KA, Rodygin KS, Skvortsova I, Kutskaya AM, Minyaev ME, Ananikov VP. Atom-economical synthesis of 1,2-bis(phosphine oxide)ethanes from calcium carbide with straightforward access to deuterium- and 13C-labeled bidentate phosphorus ligands and metal complexes. Org Chem Front 2023. [DOI: 10.1039/d2qo01652d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Straightforward access to bidentate phosphorus ligands and bis(phosphineoxide)ethanes is described based on atom-economic addition reaction. A practical approach was developed to incorporate 2H and 13C labels using easily available reagents.
Collapse
Affiliation(s)
- Kristina A. Lotsman
- Institute of Chemistry, Saint Petersburg State University, Universitetskiy pr. 26, Stary Petergof 198504, Russia
| | - Konstantin S. Rodygin
- Institute of Chemistry, Saint Petersburg State University, Universitetskiy pr. 26, Stary Petergof 198504, Russia
| | - Irina Skvortsova
- Institute of Chemistry, Saint Petersburg State University, Universitetskiy pr. 26, Stary Petergof 198504, Russia
| | - Anastasia M. Kutskaya
- Institute of Chemistry, Saint Petersburg State University, Universitetskiy pr. 26, Stary Petergof 198504, Russia
| | - Mikhail E. Minyaev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow 119991, Russia
| | - Valentine P. Ananikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskiy pr. 26, Stary Petergof 198504, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow 119991, Russia
| |
Collapse
|
7
|
Platten A, Borys A, Hevia E. Hydrophosphinylation of Styrenes Catalysed by Well‐Defined sBlock Bimetallics. ChemCatChem 2021. [DOI: 10.1002/cctc.202101853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Andrew Platten
- University of Bern: Universitat Bern Department of Chemistry and Biochemistry SWITZERLAND
| | - Andryj Borys
- University of Bern: Universitat Bern Department of Chemistry and Biochemistry SWITZERLAND
| | - Eva Hevia
- Universitat Bern Department of Chemistry and Biochemistry Freiestrasse 3 3012 Bern SWITZERLAND
| |
Collapse
|
8
|
Tran DP, Sato Y, Yamamoto Y, Kawaguchi SI, Kodama S, Nomoto A, Ogawa A. Photoinduced selective hydrophosphinylation of allylic compounds with diphenylphosphine oxide leading to γ-functionalized P-ligand precursors. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04433-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Beletskaya IP, Nájera C, Yus M. Catalysis and regioselectivity in hydrofunctionalization reactions of unsaturated carbon bonds. Part III. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4983] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The review addresses the possibility of obtaining Markovnikov and anti-Markovnikov isomers in the reactions of unsaturated hydrocarbons with organophosphorus and organosulfur compounds having P–H and S–H bonds using metal salts or complexes as catalysts.
The bibliography includes 247 references.
Collapse
|
10
|
Fener BE, Schüler P, Ueberschaar N, Bellstedt P, Görls H, Krieck S, Westerhausen M. Scope and Limitations of the s-Block Metal-Mediated Pudovik Reaction. Chemistry 2020; 26:7235-7243. [PMID: 32027050 PMCID: PMC7317549 DOI: 10.1002/chem.201905565] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Indexed: 11/29/2022]
Abstract
The hydrophosphorylation of phenylacetylene with di(aryl)phosphane oxides Ar2 P(O)H (Pudovik reaction) yields E/Z-isomer mixtures of phenylethenyl-di(aryl)phosphane oxides (1). Alkali and alkaline-earth metal di(aryl)phosphinites have been studied as catalysts for this reaction with increasing activity for the heavier s-block metals. The Pudovik reaction can only be mediated for di(aryl)phosphane oxides whereas P-bound alkyl and alcoholate substituents impede the P-H addition across alkynes. The demanding mesityl group favors the single-hydrophosphorylated products 1-Ar whereas smaller aryl substituents lead to the double-hydrophosphorylated products 2-Ar. Polar solvents are beneficial for an effective addition. Increasing concentration of the reactants and the catalyst accelerates the Pudovik reaction. Whereas Mes2 P(O)H does not form the bis-phosphorylated product 2-Mes, activation of an ortho-methyl group and cyclization occurs yielding 2-benzyl-1-mesityl-5,7-dimethyl-2,3-dihydrophosphindole 1-oxide (3).
Collapse
Affiliation(s)
- Benjamin E. Fener
- Institute of Inorganic and Analytical ChemistryFriedrich-Schiller-University JenaHumboldtstr. 807743JenaGermany
| | - Philipp Schüler
- Institute of Inorganic and Analytical ChemistryFriedrich-Schiller-University JenaHumboldtstr. 807743JenaGermany
| | - Nico Ueberschaar
- Mass Spectrometry PlatformFriedrich Schiller University JenaHumboldtstr. 807743JenaGermany
| | - Peter Bellstedt
- NMR platformFriedrich Schiller University JenaHumboldtstr. 807743JenaGermany
| | - Helmar Görls
- Institute of Inorganic and Analytical ChemistryFriedrich-Schiller-University JenaHumboldtstr. 807743JenaGermany
| | - Sven Krieck
- Institute of Inorganic and Analytical ChemistryFriedrich-Schiller-University JenaHumboldtstr. 807743JenaGermany
| | - Matthias Westerhausen
- Institute of Inorganic and Analytical ChemistryFriedrich-Schiller-University JenaHumboldtstr. 807743JenaGermany
| |
Collapse
|
11
|
Catalytic synthesis of sulfur and phosphorus compounds via atom-economic reactions. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Homo- and heterodehydrocoupling of phosphines mediated by alkali metal catalysts. Nat Commun 2019; 10:2786. [PMID: 31243267 PMCID: PMC6594957 DOI: 10.1038/s41467-019-09832-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 03/21/2019] [Indexed: 12/24/2022] Open
Abstract
Catalytic chemistry that involves the activation and transformation of main group substrates is relatively undeveloped and current examples are generally mediated by expensive transition metal species. Herein, we describe the use of inexpensive and readily available tBuOK as a catalyst for P-P and P-E (E = O, S, or N) bond formation. Catalytic quantities of tBuOK in the presence of imine, azobenzene hydrogen acceptors, or a stoichiometric amount of tBuOK with hydrazobenzene, allow efficient homodehydrocoupling of phosphines under mild conditions (e.g. 25 °C and < 5 min). Further studies demonstrate that the hydrogen acceptors play an intimate mechanistic role. We also show that our tBuOK catalysed methodology is general for the heterodehydrocoupling of phosphines with alcohols, thiols and amines to generate a range of potentially useful products containing P-O, P-S, or P-N bonds.
Collapse
|
13
|
Basiouny MMI, Dollard DA, Schmidt JAR. Regioselective Single and Double Hydrophosphination and Hydrophosphinylation of Unactivated Alkynes. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01538] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Miriam M. I. Basiouny
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, College of Natural Sciences and Mathematics, The University of Toledo, 2801 W. Bancroft Street MS 602, Toledo, Ohio 43606-3390, United States
| | - Deborah A. Dollard
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, College of Natural Sciences and Mathematics, The University of Toledo, 2801 W. Bancroft Street MS 602, Toledo, Ohio 43606-3390, United States
| | - Joseph A. R. Schmidt
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, College of Natural Sciences and Mathematics, The University of Toledo, 2801 W. Bancroft Street MS 602, Toledo, Ohio 43606-3390, United States
| |
Collapse
|
14
|
Sato Y, Nishimura M, Kawaguchi SI, Nomoto A, Ogawa A. Reductive Rearrangement of Tetraphenyldiphosphine Disulfide To Trigger the Bisthiophosphinylation of Alkenes and Alkynes. Chemistry 2019; 25:6797-6806. [PMID: 30848860 DOI: 10.1002/chem.201900073] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Indexed: 12/13/2022]
Abstract
The facile synthesis of organophosphorus compounds is of great importance for the development of new synthetic methods by using air-stable sources of phosphorus. In this respect, a synthetic method that is based on a reductive rearrangement and is capable of converting air-stable pentavalent phosphorus compounds into reactive trivalent phosphorus compounds is a powerful tool. Tetraphenyldiphosphine disulfide, which is a shelf-stable solid, was the focus of this study, and it was shown to undergo reductive rearrangement to trigger the bisthiophosphinylation of a variety of alkenes, such as terminal, cyclic, internal, and branched alkenes, 1,3-dienes, and terminal alkynes when exposed to light without any catalyst, base, or additive.
Collapse
Affiliation(s)
- Yuki Sato
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Misaki Nishimura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Shin-Ichi Kawaguchi
- Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho Karatsu, Saga, 847-0021, Japan
| | - Akihiro Nomoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Akiya Ogawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan
| |
Collapse
|
15
|
Salin AV, Il'in AV, Faskhutdinov RI, Fayzullin RR. Phosphine-catalyzed bishydrophosphorylation of electron-deficient alkynes. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.03.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Banerjee I, Harinath A, Panda TK. Alkali Metal Catalysed Double Hydrophosphorylation of Nitriles and Alkynes. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Indrani Banerjee
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi – 502 285, Sangareddy, Telangana India
| | - Adimulam Harinath
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi – 502 285, Sangareddy, Telangana India
| | - Tarun K. Panda
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi – 502 285, Sangareddy, Telangana India
| |
Collapse
|
17
|
Sato Y, Kawaguchi SI, Nomoto A, Ogawa A. Synthesis of Bis(phosphanyl)alkane Monosulfides by the Addition of Diphosphane Monosulfides to Alkenes under Light. Chemistry 2019; 25:2295-2302. [PMID: 30398679 DOI: 10.1002/chem.201805114] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Indexed: 11/07/2022]
Abstract
Bis-phosphanated compounds are regarded as the most ubiquitous privileged ligand structures in transition-metal catalysis. The development of highly atom economical reactions is of great importance for their syntheses because less atom economical methods often require complicated purification procedures under inert atmospheres to remove excess starting materials and byproducts. Herein, the photoinduced addition reactions of diphosphane monosulfides bearing PV (S)-PIII single bonds to alkenes is disclosed. These reactions require only equimolar amounts of the diphosphane monosulfide relative to the alkene and facilitate highly selective introduction of two different types of phosphorus-containing groups, such as thiophosphoryl and phosphanyl groups, into a variety of alkenes without any catalyst, base, or additive.
Collapse
Affiliation(s)
- Yuki Sato
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Shin-Ichi Kawaguchi
- Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho Karatsu, Saga, 847-0021, Japan
| | - Akihiro Nomoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Akiya Ogawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan
| |
Collapse
|
18
|
Voronin VV, Ledovskaya MS, Bogachenkov AS, Rodygin KS, Ananikov VP. Acetylene in Organic Synthesis: Recent Progress and New Uses. Molecules 2018; 23:E2442. [PMID: 30250005 PMCID: PMC6222752 DOI: 10.3390/molecules23102442] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 11/16/2022] Open
Abstract
Recent progress in the leading synthetic applications of acetylene is discussed from the prospect of rapid development and novel opportunities. A diversity of reactions involving the acetylene molecule to carry out vinylation processes, cross-coupling reactions, synthesis of substituted alkynes, preparation of heterocycles and the construction of a number of functionalized molecules with different levels of molecular complexity were recently studied. Of particular importance is the utilization of acetylene in the synthesis of pharmaceutical substances and drugs. The increasing interest in acetylene and its involvement in organic transformations highlights a fascinating renaissance of this simplest alkyne molecule.
Collapse
Affiliation(s)
- Vladimir V Voronin
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Peterhof 198504, Russia.
| | - Maria S Ledovskaya
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Peterhof 198504, Russia.
| | - Alexander S Bogachenkov
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Peterhof 198504, Russia.
| | - Konstantin S Rodygin
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Peterhof 198504, Russia.
| | - Valentine P Ananikov
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Peterhof 198504, Russia.
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia.
| |
Collapse
|
19
|
Härling SM, Fener BE, Krieck S, Görls H, Westerhausen M. Potassium Dimesitylphosphinite Catalyzed Intermolecular Hydrophosphorylation of Alkynes. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00368] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Stephan M. Härling
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, D-07743 Jena, Germany
| | - Benjamin E. Fener
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, D-07743 Jena, Germany
| | - Sven Krieck
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, D-07743 Jena, Germany
| | - Helmar Görls
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, D-07743 Jena, Germany
| | - Matthias Westerhausen
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, D-07743 Jena, Germany
| |
Collapse
|
20
|
Zhang JS, Zhang JQ, Chen T, Han LB. t-BuOK-mediated reductive addition of P(O)–H compounds to terminal alkynes forming β-arylphosphine oxides. Org Biomol Chem 2017. [DOI: 10.1039/c7ob01104k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel and efficient t-BuOK-mediated reductive addition of P(O)–H compounds to terminal alkynes forming β-arylphosphine oxides was developed. This reaction may proceed via a tandem process involving regio-selective addition and subsequent transfer hydrogenation.
Collapse
Affiliation(s)
- Ji-Shu Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Jian-Qiu Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Tieqiao Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Li-Biao Han
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba
- Japan
| |
Collapse
|