1
|
Zhao Z, Li W, Shan Q, Young DJ, Ren ZG, Li HX. Visible-Light-Induced Synthesis of Esters via a Self-Propagating Radical Reaction. J Org Chem 2025. [PMID: 39818844 DOI: 10.1021/acs.joc.4c02662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
We herein disclose a visible-light-induced synthesis of O-aryl esters through the cross-dehydrogenative coupling of aldehydes with phenols using BrCCl3, in which phenolate functions as both a substrate and a photosensitizer. This transition-metal- and photocatalyst-free visible-light-induced esterification is suitable for a wide range of substrates and gives moderate to excellent yields (up to 95%). Mechanistic studies provided evidence of a self-propagating radical reaction involving homolytic cleavage of the aldehydic C-H bond and the formation of acyl bromides. BrCCl3 serves as an oxidant and a hydrogen atom transfer (HAT) agent.
Collapse
Affiliation(s)
- Zelin Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Wenping Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Qiujie Shan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - David J Young
- James Watt School of Engineering, University of Glasgow, University Avenue, Glasgow G12 8QQ U.K
| | - Zhi-Gang Ren
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Hong-Xi Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
2
|
Ando H, Kodaki S, Takamura H, Kadota I, Tanaka K. A direct oxidative esterification of aldehydes with alcohols mediated by photochemical C-H bromination. Org Biomol Chem 2024; 22:9032-9035. [PMID: 39239668 DOI: 10.1039/d4ob01237b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The photochemical direct esterification of aldehydes with alcohols via in situ-generated acyl-bromides presented in this report is an attractive complementary addition to hitherto reported methods, as these are usually carried out in a two-step, one-pot procedure in order to avoid side reactions such as the oxidation of alcohols by halogen sources.
Collapse
Affiliation(s)
- Haru Ando
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kitaku, Okayama 700-8530, Japan.
| | - Sakura Kodaki
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kitaku, Okayama 700-8530, Japan.
| | - Hiroyoshi Takamura
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kitaku, Okayama 700-8530, Japan.
| | - Isao Kadota
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kitaku, Okayama 700-8530, Japan.
| | - Kenta Tanaka
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-Naka, Kitaku, Okayama 700-8530, Japan.
| |
Collapse
|
3
|
Huang B, Zhang Z, Jiao J, Liu W, Yan X. Redox-Paired Reductive Heck Reaction and Oxidative Esterification Catalyzed by Mesoionic Carbenes. Org Lett 2024; 26:7419-7424. [PMID: 39172063 DOI: 10.1021/acs.orglett.4c02762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Paring a reductive reaction and an oxidative reaction in one reaction could be immensely important in achieving atom economic and environmental advantages. Herein, we report a simple protocol that combines two such reductive Heck reactions and oxidative esterification by using mesoionic carbenes as catalysts to synthesize multiple valuable products under mild conditions.
Collapse
Affiliation(s)
- Benkai Huang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Zengyu Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Jie Jiao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Wei Liu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Xiaoyu Yan
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| |
Collapse
|
4
|
Panday S, Maity T, Bhatti P, Laha JK. Direct access to pyrrole anhydrides via oxidative self-coupling of pyrrole carboxaldehydes. Org Biomol Chem 2024; 22:3045-3052. [PMID: 38536061 DOI: 10.1039/d4ob00052h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
An elegant synthesis of pyrrole-2-carboxylic acid anhydrides from pyrrole-2-carboxaldehydes using TBAI as a catalyst and tert-butyl hydroperoxide (TBHP) as an oxidant is described herein. Unlike the previous reports wherein pyrrole-2-carboxylic acids were invariably used, we report here for first time the oxidative self-coupling of N-benzyl pyrrole-2-carboxaldehydes for the synthesis of 1-benzyl-1H-pyrrole-2-carboxylic anhydrides. In addition, a one-pot synthesis of novel pyrrole-2-carboxamides from pyrrole-2-carboxaldehydes is also reported. The mechanistic investigation supports a previously unexplored oxidative self-coupling of a pyrrole acyl radical, leading to the synthesis of a carboxylic anhydride.
Collapse
Affiliation(s)
- Surabhi Panday
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research (NIPER) S.A.S. Nagar, Punjab 160062, India.
| | - Tapas Maity
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research (NIPER) S.A.S. Nagar, Punjab 160062, India.
| | - Pratibha Bhatti
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research (NIPER) S.A.S. Nagar, Punjab 160062, India.
| | - Joydev K Laha
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research (NIPER) S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
5
|
Nagy BS, Fu G, Hone CA, Kappe CO, Ötvös SB. Harnessing a Continuous-Flow Persulfuric Acid Generator for Direct Oxidative Aldehyde Esterifications. CHEMSUSCHEM 2023; 16:e202201868. [PMID: 36377674 PMCID: PMC10107610 DOI: 10.1002/cssc.202201868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Persulfuric acid is a well-known oxidant in various industrial-scale purification procedures. However, due to its tendency toward explosive decomposition, its usefulness in organic synthesis remained largely underexplored. Herein, a continuous in situ persulfuric acid generator was developed and applied for oxidative esterification of aldehydes under flow conditions. Sulfuric acid served as a readily available and benign precursor to form persulfuric acid in situ. By taking advantage of the continuous-flow generator concept, safety hazards were significantly reduced, whilst a robust and effective approach was ensured for direct transformations of aldehydes to valuable esters. The process proved useful for the transformation of diverse aliphatic as well as aromatic aldehydes, while its preparative capability was verified by the multigram-scale synthesis of a pharmaceutically relevant key intermediate. The present flow protocol demonstrates the safe, sustainable, and scalable application of persulfuric acid in a manner that would not be amenable to conventional batch processing.
Collapse
Affiliation(s)
- Bence S. Nagy
- Institute of ChemistryUniversity of GrazNAWI GrazHeinrichstrasse 28A-8010GrazAustria
| | - Gang Fu
- Institute of ChemistryUniversity of GrazNAWI GrazHeinrichstrasse 28A-8010GrazAustria
| | - Christopher A. Hone
- Institute of ChemistryUniversity of GrazNAWI GrazHeinrichstrasse 28A-8010GrazAustria
- Center for Continuous Flow Synthesis and Processing (CC FLOW)Research CenterPharmaceutical Engineering GmbH (RCPE)Inffeldgasse 13A-8010GrazAustria
| | - C. Oliver Kappe
- Institute of ChemistryUniversity of GrazNAWI GrazHeinrichstrasse 28A-8010GrazAustria
- Center for Continuous Flow Synthesis and Processing (CC FLOW)Research CenterPharmaceutical Engineering GmbH (RCPE)Inffeldgasse 13A-8010GrazAustria
| | - Sándor B. Ötvös
- Institute of ChemistryUniversity of GrazNAWI GrazHeinrichstrasse 28A-8010GrazAustria
- Center for Continuous Flow Synthesis and Processing (CC FLOW)Research CenterPharmaceutical Engineering GmbH (RCPE)Inffeldgasse 13A-8010GrazAustria
| |
Collapse
|
6
|
Christidou A, Zavalani K, Hatzidimitriou AG, Psomas G. Copper(II) complexes with 3,5-dihalogeno-salicylaldehydes: Synthesis, structure and interaction with DNA and albumins. J Inorg Biochem 2023; 238:112049. [PMID: 36327500 DOI: 10.1016/j.jinorgbio.2022.112049] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 11/21/2022]
Abstract
Eight copper(II) complexes of 3,5-dichloro-salicyladehyde or 3,5-dibromo-salicyladehyde (3,5-diX-saloH, X = Br or Cl) were synthesized in the absence or presence of a N,N'-donor co-ligand such as 2,2'-bipyridylamine, 1,10-phenanthroline, or 2,2'-bipyridine. The resultant compounds were formulated as [Cu(3,5-diX-salo)2(MeOH)2] (1-2) and [Cu(3,5-diX-salo)(N,N'-donor)Cl] (3-8) and were characterized by diverse techniques. The crystal structures of three complexes were determined by single-crystal X-ray crystallography. Diverse techniques were employed in order to investigate the interaction of the complexes with calf-thymus DNA which showed intercalation as the most possible mode of their interaction. The affinity of the complexes for bovine serum albumin and human serum albumin was evaluated by fluorescence emission spectroscopy in order to calculate the binding constants which suggested a tight and reversible binding. SYNOPSIS: A series of copper(II) complexes with 3,5-dihalogen-substituted salicylaldehydes as ligands were isolated and characterized. In vitro biological studies showed the intercalation of the compounds with calf-thymus DNA and their tight and reversible binding with serum albumins.
Collapse
Affiliation(s)
- Aphrodite Christidou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece
| | - Konstantina Zavalani
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece
| | - Antonios G Hatzidimitriou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece
| | - George Psomas
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece.
| |
Collapse
|
7
|
Hasan K, Joseph RG, Patole SP. Copper Pyrrole‐imine Incorporated Fe
3
O
4
‐Nanocomposite: A Magnetically Separable and Reusable Catalyst for the Oxidative Amination of Aryl Aldehydes. ChemistrySelect 2022. [DOI: 10.1002/slct.202201840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kamrul Hasan
- Pure and Applied Chemistry Group Department of Chemistry College of Sciences University of Sharjah, P.O. Box 27272 Sharjah United Arab Emirates
| | - Reshma G. Joseph
- Pure and Applied Chemistry Group Department of Chemistry College of Sciences University of Sharjah, P.O. Box 27272 Sharjah United Arab Emirates
| | - Shashikant P. Patole
- Department of Physics Khalifa University of Science and Technology, P.O. Box 127788 Abu Dhabi United Arab Emirates
| |
Collapse
|
8
|
Chai LL, Zhao YH, Young DJ, Lu X, Li HX. Ni(II)-Mediated Photochemical Oxidative Esterification of Aldehydes with Phenols. Org Lett 2022; 24:6908-6913. [PMID: 36121710 DOI: 10.1021/acs.orglett.2c02560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The photopromoted, Ni-catalyzed acceptorless dehydrogenation esterification of phenols and aromatic aldehydes has been achieved in an oxidant- and external photosensitizer-free manner. This reliable and atom-economical transformation was tolerant to a wide range of functional groups and proceeded efficiently to give various aryl benzoates in moderate to high yields. Additionally, this photocatalytic system displayed high activity for the hydrogen-evolution cross coupling of aliphatic aldehydes and phenols employing dual nickel and aromatic aldehyde catalysis.
Collapse
Affiliation(s)
- Lu-Lu Chai
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - You-Hui Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - David James Young
- College of Engineering, IT and Environment, Charles Darwin University, Darwin, NT 0909, Australia
| | - Xinhua Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Hong-Xi Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
9
|
Kumar V, Dhawan S, Bala R, Mohite SB, Singh P, Karpoormath R. Cu-catalysed transamidation of unactivated aliphatic amides. Org Biomol Chem 2022; 20:6931-6940. [PMID: 35983826 DOI: 10.1039/d2ob01152b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Direct transamidation is gaining prominence as a ground-breaking technique that generates a wide variety of amides without the requirement of acid-amine coupling or other intermediate steps. However, transamidation of unactivated aliphatic amides, on the other hand, has been a long-standing issue in comparison to transamidation of activated amides. Herein, we report a transamidation approach of an unactivated aliphatic amide using a copper catalyst and chlorotrimethylsilane as an additive. In addition, we used transamidation as a tool for selective N-C(O) cleavage and O-C(O) formation to synthesise 2-substituted benzoxazoles and benzothiazoles. The reactions were carried out without using any solvents and offered wide substitution scope.
Collapse
Affiliation(s)
- Vishal Kumar
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban-4000, South Africa.
| | - Sanjeev Dhawan
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban-4000, South Africa.
| | - Renu Bala
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban-4000, South Africa.
| | - Sachin Balaso Mohite
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban-4000, South Africa.
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal (Westville campus), Private Bag X01, Scottsville, Durban, South Africa.
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban-4000, South Africa.
| |
Collapse
|
10
|
Zhao F, Russo P, Mancuso R, Gabriele B, Wu XF. Copper-Catalyzed Carbonylative Coupling of Alkyl Iodides with Phenols for the Synthesis of Esters. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Nagy BS, Llanes P, Pericas MA, Kappe CO, Ötvös SB. Enantioselective Flow Synthesis of Rolipram Enabled by a Telescoped Asymmetric Conjugate Addition-Oxidative Aldehyde Esterification Sequence Using in Situ-Generated Persulfuric Acid as Oxidant. Org Lett 2022; 24:1066-1071. [PMID: 35050638 PMCID: PMC8822492 DOI: 10.1021/acs.orglett.1c04300] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel approach is reported for the enantioselective flow synthesis of rolipram comprising a telescoped asymmetric conjugate addition-oxidative aldehyde esterification sequence followed by trichlorosilane-mediated nitro group reduction and concomitant lactamization. The telescoped process takes advantage of a polystyrene-supported chiral organocatalyst along with in situ-generated persulfuric acid as a robust and scalable oxidant for direct aldehyde esterification. This approach demonstrates significantly improved productivity compared with earlier methodologies while ensuring environmentally benign metal-free conditions.
Collapse
Affiliation(s)
- Bence S Nagy
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - Patricia Llanes
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, E-43007 Tarragona, Spain
| | - Miquel A Pericas
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, E-43007 Tarragona, Spain.,Departament de Química Inorgànica i Orgànica, Universitat de Barcelona (UB), E-08028 Barcelona, Spain
| | - C Oliver Kappe
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010 Graz, Austria.,Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, A-8010 Graz, Austria
| | - Sándor B Ötvös
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010 Graz, Austria.,Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, A-8010 Graz, Austria
| |
Collapse
|
12
|
Khalili D, Roosta M, Khalafi-Nezhad A, Ebrahimi E. From methylarenes to Esters: Efficient oxidative Csp3-H activation promoted by CuO decorated magnetic reduced graphene oxide. NEW J CHEM 2022. [DOI: 10.1039/d2nj00728b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnetic reduced graphene oxide supported CuO (rGO/Fe3O4-CuO) as the heterogeneous catalyst in cross dehydrogenative coupling (CDC) reactions has been demonstrated for the synthesis of esters using methyl aromatics, aldehydes/benzyl alcohols...
Collapse
|
13
|
Xia D, Duan XF. Iron-Catalyzed Dearomatization of Biaryl Ynones with Aldehydes via Double C-H Functionalization in Eco-Benign Solvents: Highly Atom-Economical Synthesis of Acylated Spiro[5.5]trienones. J Org Chem 2021; 86:15263-15275. [PMID: 34643395 DOI: 10.1021/acs.joc.1c01870] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The multiple C-H bonds of biaryl ynones render the 6-exo-trig regioselective C-H activation dearomatization to spiro[5.5]trienones challenging since the competing reactions of C-H bonds on Ar1 or the ortho-C-H bonds on Ar3 may result in 5-exo-trig cyclization to indenones or 6-exo-trig ortho-dearomatization, respectively. We here report an unprecendented dearomatization of biaryl ynones with aldehydes via double C-H functionalization where a regiospecific remote unactivated para-C-H functionalization of biaryl ynones efficiently furnishes acylated spiro[5.5]trienones. This cascade cyclization features a green catalyst and solvent and high atom- and step-economy.
Collapse
Affiliation(s)
- Dong Xia
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xin-Fang Duan
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
14
|
Vilanculo CB, José da Silva M. Na 4PMo 11VO 40-catalyzed one-pot oxidative esterification of benzaldehyde with hydrogen peroxide. RSC Adv 2021; 11:34979-34987. [PMID: 35494772 PMCID: PMC9042929 DOI: 10.1039/d1ra06718d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/10/2021] [Indexed: 01/31/2023] Open
Abstract
The activity of the sodium salts of vanadium-doped phosphomolybdic acid was assessed in the oxidative esterification reaction of benzaldehyde with hydrogen peroxide in alkyl alcohol solutions. The effect of main reaction parameters, such as temperature, catalyst load, vanadium doping level, and reactant stoichiometry, on the conversion and reaction selectivity was investigated. Among the tested heteropoly salts, Na4PMo11VO40 was the most active and selective catalyst, achieving almost complete conversion of benzaldehyde and high ester selectivity regardless of the alcohol investigated. The efficiency of the catalyst was correlated with its vanadium content. The size of the carbon chain of alcohol and the steric hindrance on the hydroxyl group played a key role in the reaction selectivity. While methyl and ethyl alcohols selectively provided the ester as the main product (ca. 90–95%) and benzoic acid as a subproduct, the other alcohols also afforded acetal, a condensation product, and benzaldehyde peroxide, an oxidation reaction intermediate, as secondary products. The use of an inexpensive, environmentally benign, and atom-efficient oxidant, mild conditions, and short reaction times were the positive aspects of this one-pot process. The activity of the sodium salts of vanadium-doped phosphomolybdic acid was assessed in the oxidative esterification reaction of benzaldehyde with hydrogen peroxide in alkyl alcohol solutions.![]()
Collapse
Affiliation(s)
- Castelo Bandane Vilanculo
- Chemistry Department, Pedagogic University of Mozambique, FCNM, Campus of Lhanguene Av. De Moçambique, Km 1 Maputo 4040 Mozambique +258 825573337
| | - Márcio José da Silva
- Chemistry Department, Federal University of Viçosa Minas Gerais State 36590-000 Brazil
| |
Collapse
|
15
|
Harnying W, Sudkaow P, Biswas A, Berkessel A. N-Heterocyclic Carbene/Carboxylic Acid Co-Catalysis Enables Oxidative Esterification of Demanding Aldehydes/Enals, at Low Catalyst Loading. Angew Chem Int Ed Engl 2021; 60:19631-19636. [PMID: 34010504 PMCID: PMC8457137 DOI: 10.1002/anie.202104712] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/10/2021] [Indexed: 01/07/2023]
Abstract
We report the discovery that simple carboxylic acids, such as benzoic acid, boost the activity of N-heterocyclic carbene (NHC) catalysts in the oxidative esterification of aldehydes. A simple and efficient protocol for the transformation of a wide range of sterically hindered α- and β-substituted aliphatic aldehydes/enals, catalyzed by a novel and readily accessible N-Mes-/N-2,4,6-trichlorophenyl 1,2,4-triazolium salt, and benzoic acid as co-catalyst, was developed. A whole series of α/β-substituted aliphatic aldehydes/enals hitherto not amenable to NHC-catalyzed esterification could be reacted at typical catalyst loadings of 0.02-1.0 mol %. For benzaldehyde, even 0.005 mol % of NHC catalyst proved sufficient: the lowest value ever achieved in NHC catalysis. Preliminary studies point to carboxylic acid-induced acceleration of acyl transfer from azolium enolate intermediates as the mechanistic basis of the observed effect.
Collapse
Affiliation(s)
- Wacharee Harnying
- Department of Chemistry (Organic Chemistry), University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| | - Panyapon Sudkaow
- Department of Chemistry (Organic Chemistry), University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| | - Animesh Biswas
- Department of Chemistry (Organic Chemistry), University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| | - Albrecht Berkessel
- Department of Chemistry (Organic Chemistry), University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| |
Collapse
|
16
|
Harnying W, Sudkaow P, Biswas A, Berkessel A. N‐Heterocyclic Carbene/Carboxylic Acid Co‐Catalysis Enables Oxidative Esterification of Demanding Aldehydes/Enals, at Low Catalyst Loading. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Wacharee Harnying
- Department of Chemistry (Organic Chemistry) University of Cologne Greinstraße 4 50939 Cologne Germany
| | - Panyapon Sudkaow
- Department of Chemistry (Organic Chemistry) University of Cologne Greinstraße 4 50939 Cologne Germany
| | - Animesh Biswas
- Department of Chemistry (Organic Chemistry) University of Cologne Greinstraße 4 50939 Cologne Germany
| | - Albrecht Berkessel
- Department of Chemistry (Organic Chemistry) University of Cologne Greinstraße 4 50939 Cologne Germany
| |
Collapse
|
17
|
Dagar N, Singh S, Roy SR. Copper Catalyzed‐TBHP/DTBP Promoted C(sp
2
)−H Bond Scission of Aldehydes: An Approach to Transform Aldehyde to Esters. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Neha Dagar
- Department of Chemistry Indian Institute of Technology Delhi Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Swati Singh
- Department of Chemistry Indian Institute of Technology Delhi Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Sudipta Raha Roy
- Department of Chemistry Indian Institute of Technology Delhi Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| |
Collapse
|
18
|
Kato M, Ghosh K, Nishii Y, Miura M. Rhodium-catalysed direct formylmethylation using vinylene carbonate and sequential dehydrogenative esterification. Chem Commun (Camb) 2021; 57:8280-8283. [PMID: 34319322 DOI: 10.1039/d1cc03362j] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A rhodium-catalysed direct formylmethylation adopting vinylene carbonate as an ethynol equivalent is reported. The developed catalytic system is further utilised for the oxidant-free production of esters with the liberation of hydrogen gas. Some control experiments are conducted to elucidate the reaction mechanism.
Collapse
Affiliation(s)
- Moena Kato
- Department of Applied Chemistry, Graduate School of Engineering, Suita, Osaka 565-0871, Japan.
| | | | | | | |
Collapse
|
19
|
Brown RCD. The Longer Route can be Better: Electrosynthesis in Extended Path Flow Cells. CHEM REC 2021; 21:2472-2487. [PMID: 34302434 DOI: 10.1002/tcr.202100163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/02/2021] [Indexed: 01/01/2023]
Abstract
This personal account provides an overview of work conducted in my research group, and through collaborations with other chemists and engineers, to develop flow electrolysis cells and apply these cells in organic electrosynthesis. First, a brief summary of my training and background in organic synthesis is provided, leading in to the start of flow electrosynthesis in my lab in collaboration with Derek Pletcher. Our work on the development of extended path electrolysis flow reactors is described from a synthetic organic chemist's perspective, including laboratory scale-up to give several moles of an anodic methoxylation product in one day. The importance of cell design is emphasised with regards to achieving good performance in laboratory electrosynthesis with productivities from hundreds of mg h-1 to many g h-1 , at high conversion in a selective fashion. A simple design of recycle flow cell that can be readily constructed in a small University workshop is also discussed, including simple modifications to improve cell performance. Some examples of flow electrosyntheses are provided, including Shono-type oxidation, anodic cleavage of protecting groups, Hofer-Moest reaction of cubane carboxylic acids, oxidative esterification and amidation of aldehydes, and reduction of aryl halides.
Collapse
Affiliation(s)
- Richard C D Brown
- School of Chemistry, The University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| |
Collapse
|
20
|
Preformed molecular complexes of metals with organoselenium ligands: Syntheses and applications in catalysis. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213885] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Laha JK, Panday S, Tomar M, Patel KV. Possible competitive modes of decarboxylation in the annulation reactions of ortho-substituted anilines and arylglyoxylates. Org Biomol Chem 2021; 19:845-853. [DOI: 10.1039/d0ob00360c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Annulation reactions of ortho-substituted anilines and arylglyoxylates to the tandem synthesis of nitrogen heterocycles in the presence of K2S2O8 have been investigated, which occur via decarboxylation before or after the reaction with anilines.
Collapse
Affiliation(s)
- Joydev K. Laha
- Department of Pharmaceutical Technology (Process Chemistry)
- National Institute of Pharmaceutical Education and Research
- S. A. S. Nagar
- India
| | - Surabhi Panday
- Department of Pharmaceutical Technology (Process Chemistry)
- National Institute of Pharmaceutical Education and Research
- S. A. S. Nagar
- India
| | - Monika Tomar
- Department of Pharmaceutical Technology (Process Chemistry)
- National Institute of Pharmaceutical Education and Research
- S. A. S. Nagar
- India
| | - Ketul V. Patel
- Department of Pharmaceutical Technology (Process Chemistry)
- National Institute of Pharmaceutical Education and Research
- S. A. S. Nagar
- India
| |
Collapse
|
22
|
Bhowmick A, Warghude PK, Dharpure PD, Bhat RG. Direct access to α-acyloxycarbonyl compounds and esters via oxidative esterification of aldehydes under visible light. Org Chem Front 2021. [DOI: 10.1039/d1qo00731a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An efficient synthesis of α-acyloxycarbonyl compounds and esters from aldehydes and α-bromocarbonyl compounds/benzyl bromide derivatives via photoredox catalysis has been developed.
Collapse
Affiliation(s)
- Anindita Bhowmick
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, 411008, Maharashtra, India
| | - Prakash K. Warghude
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, 411008, Maharashtra, India
| | - Pankaj D. Dharpure
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, 411008, Maharashtra, India
| | - Ramakrishna G. Bhat
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, 411008, Maharashtra, India
| |
Collapse
|
23
|
Rousta M, Khalili D, Khalafi-Nezhad A, Ebrahimi E. CuO-decorated magnetite-reduced graphene oxide: a robust and promising heterogeneous catalyst for the oxidative amidation of methylarenes in water via benzylic sp 3 C–H activation. NEW J CHEM 2021. [DOI: 10.1039/d1nj03982b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CuO-decorated magnetite-reduced graphene oxide: a heterogeneous catalyst for the oxidative amidation of methylarenes in water at room temperature.
Collapse
Affiliation(s)
- Marzieh Rousta
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Dariush Khalili
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Ali Khalafi-Nezhad
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Edris Ebrahimi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| |
Collapse
|
24
|
Di Carmine G, Ragno D, Massi A, D'Agostino C. Oxidative Coupling of Aldehydes with Alcohol for the Synthesis of Esters Promoted by Polystyrene-Supported N-Heterocyclic Carbene: Unraveling the Solvent Effect on the Catalyst Behavior Using NMR Relaxation. Org Lett 2020; 22:4927-4931. [PMID: 32383888 PMCID: PMC7341527 DOI: 10.1021/acs.orglett.0c01188] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heterogeneous organocatalysts hold great potential as they offer practical advantages in terms of purification and reusability compared with the homogeneous counterpart. A puzzling aspect is the solvent effect on their catalytic performance. Here we propose a new approach whereby T1/T2 NMR relaxation measurements are used to evaluate the strength of solvent-surface interactions in the polystyrene-supported N-heterocyclic carbene-promoted oxidation of aldehydes. The results reveal that solvents with high surface affinity lead to a decrease in catalyst activity.
Collapse
Affiliation(s)
- Graziano Di Carmine
- Department of Chemical Engineering and Analytical Science, The University of Manchester, The Mill, Sackville Street, Manchester, M13 9PL, U.K
| | - Daniele Ragno
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, Via Luigi Borsari, 46, I-44121 Ferrara, Italy
| | - Alessandro Massi
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, Via Luigi Borsari, 46, I-44121 Ferrara, Italy
| | - Carmine D'Agostino
- Department of Chemical Engineering and Analytical Science, The University of Manchester, The Mill, Sackville Street, Manchester, M13 9PL, U.K
| |
Collapse
|
25
|
Amirmahani N, Rashidi M, Mahmoodi NO. Synthetic application of gold complexes on magnetic supports. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5626] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Najmeh Amirmahani
- Department of ChemistryFaculty of Science, University of Guilan, University Campus 2 Rasht Iran
- Environmental Health Engineering Research CenterKerman University of Medical Sciences Kerman Iran
| | - Mohsen Rashidi
- Department of Chemistry, Faculty of ScienceShahid Bahonar University of Kerman Kerman Iran
| | - Nosrat O. Mahmoodi
- Department of ChemistryFaculty of Science, University of Guilan, University Campus 2 Rasht Iran
| |
Collapse
|
26
|
Soltani R, Ghaderi A. Metal‐free aerobic oxidative esterification of aromatic aldehydes promoted by potassium fluoride (KF). J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201800344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Roghaye Soltani
- Department of Chemistry, College of SciencesUniversity of Hormozgan Bandar Abbas Iran
| | - Arash Ghaderi
- Department of Chemistry, College of SciencesUniversity of Hormozgan Bandar Abbas Iran
| |
Collapse
|
27
|
Gaspa S, Carraro M, Pisano L, Porcheddu A, De Luca L. Trichloroisocyanuric Acid: a Versatile and Efficient Chlorinating and Oxidizing Reagent. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900449] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Silvia Gaspa
- Dipartimento di Chimica e Farmacia; Università degli Studi di Sassari; Via Vienna 2 07100 Sassari Italy
| | - Massimo Carraro
- Dipartimento di Chimica e Farmacia; Università degli Studi di Sassari; Via Vienna 2 07100 Sassari Italy
| | - Luisa Pisano
- Dipartimento di Chimica e Farmacia; Università degli Studi di Sassari; Via Vienna 2 07100 Sassari Italy
| | - Andrea Porcheddu
- Dipartimento di Scienze Chimiche e Geologiche; Università degli Studi di Cagliari; Cittadella Universitaria 09042 Monserrato Italy
| | - Lidia De Luca
- Dipartimento di Chimica e Farmacia; Università degli Studi di Sassari; Via Vienna 2 07100 Sassari Italy
| |
Collapse
|
28
|
Gaspa S, Raposo I, Pereira L, Mulas G, Ricci PC, Porcheddu A, De Luca L. Visible light-induced transformation of aldehydes to esters, carboxylic anhydrides and amides. NEW J CHEM 2019. [DOI: 10.1039/c9nj01984g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A transition metal- and organophotocatalyst free synthesis of esters, carboxylic anhydrides and amides from aldehydes induced by visible-light has been reported.
Collapse
Affiliation(s)
- Silvia Gaspa
- Dipartimento di Chimica e Farmacia
- Università degli Studi di Sassari
- 07100 Sassari
- Italy
| | - Inês Raposo
- Dipartimento di Chimica e Farmacia
- Università degli Studi di Sassari
- 07100 Sassari
- Italy
| | - Leonor Pereira
- Dipartimento di Chimica e Farmacia
- Università degli Studi di Sassari
- 07100 Sassari
- Italy
| | - Gabriele Mulas
- Dipartimento di Chimica e Farmacia
- Università degli Studi di Sassari
- 07100 Sassari
- Italy
| | - Pier Carlo Ricci
- Dipartimento di Fisica
- Università degli Studi di Cagliari
- Cittadella Universitaria
- 09042 Monserrato
- Italy
| | - Andrea Porcheddu
- Dipartimento di Scienze Chimiche e Geologiche
- Università degli Studi di Cagliari
- Cittadella Universitaria
- 09042 Monserrato
- Italy
| | - Lidia De Luca
- Dipartimento di Chimica e Farmacia
- Università degli Studi di Sassari
- 07100 Sassari
- Italy
| |
Collapse
|
29
|
Pandey G, Koley S, Talukdar R, Sahani PK. Cross-Dehydrogenating Coupling of Aldehydes with Amines/R-OTBS Ethers by Visible-Light Photoredox Catalysis: Synthesis of Amides, Esters, and Ureas. Org Lett 2018; 20:5861-5865. [DOI: 10.1021/acs.orglett.8b02537] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Ganesh Pandey
- Molecular Synthesis and Drug Discovery Laboratory, Centre of Biomedical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow-226014, India
| | - Suvajit Koley
- Molecular Synthesis and Drug Discovery Laboratory, Centre of Biomedical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow-226014, India
| | - Ranadeep Talukdar
- Molecular Synthesis and Drug Discovery Laboratory, Centre of Biomedical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow-226014, India
| | - Pramod Kumar Sahani
- Molecular Synthesis and Drug Discovery Laboratory, Centre of Biomedical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow-226014, India
| |
Collapse
|
30
|
Kärkäs MD. Electrochemical strategies for C-H functionalization and C-N bond formation. Chem Soc Rev 2018; 47:5786-5865. [PMID: 29911724 DOI: 10.1039/c7cs00619e] [Citation(s) in RCA: 627] [Impact Index Per Article: 89.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Conventional methods for carrying out carbon-hydrogen functionalization and carbon-nitrogen bond formation are typically conducted at elevated temperatures, and rely on expensive catalysts as well as the use of stoichiometric, and perhaps toxic, oxidants. In this regard, electrochemical synthesis has recently been recognized as a sustainable and scalable strategy for the construction of challenging carbon-carbon and carbon-heteroatom bonds. Here, electrosynthesis has proven to be an environmentally benign, highly effective and versatile platform for achieving a wide range of nonclassical bond disconnections via generation of radical intermediates under mild reaction conditions. This review provides an overview on the use of anodic electrochemical methods for expediting the development of carbon-hydrogen functionalization and carbon-nitrogen bond formation strategies. Emphasis is placed on methodology development and mechanistic insight and aims to provide inspiration for future synthetic applications in the field of electrosynthesis.
Collapse
Affiliation(s)
- Markus D Kärkäs
- Department of Chemistry, Organic Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
31
|
Gao J, Zhao P, Qiao Y, Li H. Mechanistic insights into N
-heterocyclic carbene (NHC)-catalyzed N
-acylation of N
-sulfonylcarboxamides with aldehydes. J PHYS ORG CHEM 2018. [DOI: 10.1002/poc.3811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jinxin Gao
- College of Enology; Northwest A&F University; Yangling China
- Department of Cooking Food; Henan Polytechnic; Zhengzhou China
| | - Pengtao Zhao
- College of Enology; Northwest A&F University; Yangling China
| | - Yan Qiao
- Basic Medical College of Zhengzhou University; Zhengzhou China
| | - Hua Li
- College of Enology; Northwest A&F University; Yangling China
| |
Collapse
|
32
|
Hou F, Wang XC, Quan ZJ. Efficient synthesis of esters through oxone-catalyzed dehydrogenation of carboxylic acids and alcohols. Org Biomol Chem 2018; 16:9472-9476. [DOI: 10.1039/c8ob02539h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An environmentally friendly oxone (20 mol%) catalyzed esterification of carboxylic acids with alcohols has been developed, providing an attractive alternative to the construction of valuable carbonyl esters.
Collapse
Affiliation(s)
- Fei Hou
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- People's Republic of China
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
| | - Xi-Cun Wang
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- People's Republic of China
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
| | - Zheng-Jun Quan
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- People's Republic of China
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
| |
Collapse
|
33
|
Kashparova VP, Papina EN, Kashparov II, Zhukova IY, Ilchibaeva IB, Kagan ES. One-pot electrochemical synthesis of acid anhydrides from alcohols. RUSS J GEN CHEM+ 2017. [DOI: 10.1134/s1070363217110330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Gao M, Chen M, Li Y, Tang H, Ding H, Wang K, Yang L, Li C, Lei A. Palladium-Catalyzed Aerobic Oxidative Cross-Esterification of Aldehydes with Alcohols. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Meng Gao
- National Research Center for Carbohydrate Synthesis; Jiangxi Normal University; Nanchang 330022 Jiangxi P.R. China
| | - Meng Chen
- National Research Center for Carbohydrate Synthesis; Jiangxi Normal University; Nanchang 330022 Jiangxi P.R. China
| | - Yang Li
- National Research Center for Carbohydrate Synthesis; Jiangxi Normal University; Nanchang 330022 Jiangxi P.R. China
| | - Hong Tang
- National Research Center for Carbohydrate Synthesis; Jiangxi Normal University; Nanchang 330022 Jiangxi P.R. China
| | - Hao Ding
- National Research Center for Carbohydrate Synthesis; Jiangxi Normal University; Nanchang 330022 Jiangxi P.R. China
| | - Kai Wang
- National Research Center for Carbohydrate Synthesis; Jiangxi Normal University; Nanchang 330022 Jiangxi P.R. China
| | - Lingen Yang
- National Research Center for Carbohydrate Synthesis; Jiangxi Normal University; Nanchang 330022 Jiangxi P.R. China
| | - Cuiting Li
- National Research Center for Carbohydrate Synthesis; Jiangxi Normal University; Nanchang 330022 Jiangxi P.R. China
| | - Aiwen Lei
- National Research Center for Carbohydrate Synthesis; Jiangxi Normal University; Nanchang 330022 Jiangxi P.R. China
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS); Wuhan University; Wuhan Hubei 430072 P.R. China
| |
Collapse
|
35
|
Audubert C, Lebel H. Mild Esterification of Carboxylic Acids via Continuous Flow Diazotization of Amines. Org Lett 2017; 19:4407-4410. [DOI: 10.1021/acs.orglett.7b02231] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Clément Audubert
- Département de Chimie,
Center for Green Chemistry and Catalysis, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
| | - Hélène Lebel
- Département de Chimie,
Center for Green Chemistry and Catalysis, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
| |
Collapse
|
36
|
Chun S, Chung YK. Transition-Metal-Free Poly(thiazolium) Iodide/1,8-Diazabicyclo[5.4.0]undec-7-ene/Phenazine-Catalyzed Esterification of Aldehydes with Alcohols. Org Lett 2017; 19:3787-3790. [DOI: 10.1021/acs.orglett.7b01617] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Supill Chun
- Department of Chemistry,
College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Young Keun Chung
- Department of Chemistry,
College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
37
|
Zheng C, Liu X, Ma C. Organocatalytic Direct N-Acylation of Amides with Aldehydes under Oxidative Conditions. J Org Chem 2017; 82:6940-6945. [DOI: 10.1021/acs.joc.7b00457] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chenguang Zheng
- Department of Chemistry, Zhejiang University, 20 Yugu Road, Hangzhou 310027, China
| | - Xiang Liu
- Department of Chemistry, Zhejiang University, 20 Yugu Road, Hangzhou 310027, China
| | - Cheng Ma
- Department of Chemistry, Zhejiang University, 20 Yugu Road, Hangzhou 310027, China
| |
Collapse
|
38
|
Zhang H, Su Y, Wang KH, Huang D, Li J, Hu Y. Synthesis of N-acetoxy-N-arylamides via diacetoxyiodobenzene promoted double acylation reaction of hydroxylamines with aldehydes. Org Biomol Chem 2017; 15:5337-5344. [DOI: 10.1039/c7ob00855d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile and efficient synthesis of N-acetoxy-N-arylamides through double acylations of hydroxylamines with aldehydes and diacetoxyiodobenzene is reported. The yields of the products are good to excellent.
Collapse
Affiliation(s)
- Huaiyuan Zhang
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Yingpeng Su
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Ke-Hu Wang
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Danfeng Huang
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Jun Li
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Yulai Hu
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
- State Key Laboratory of Applied Organic Chemistry
| |
Collapse
|
39
|
Nguyen TT, Hull KL. Rhodium-Catalyzed Oxidative Amidation of Sterically Hindered Aldehydes and Alcohols. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02541] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Trang T. Nguyen
- Department
of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61820, United States
| | - Kami L. Hull
- Department
of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61820, United States
| |
Collapse
|