1
|
Khanam A, Dubey S, Mandal PK. Mild method for the synthesis of α-glycosyl chlorides: A convenient protocol for quick one-pot glycosylation. Carbohydr Res 2023; 534:108976. [PMID: 37871478 DOI: 10.1016/j.carres.2023.108976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023]
Abstract
A simple and efficient protocol for the preparation of α-glycosyl chlorides within 15-30 min is described which employs a stable, cheap, and commercially available Trichloroisocyanuric acid (TCCA) as non-toxic chlorinating agent along with PPh3. This process involved a wide range of substrate scope and is well-suited with labile hydroxyl protecting groups such as benzyl, acetyl, benzoyl, isopropylidene, benzylidene, and TBDPS (tert-butyldiphenylsilyl) groups. This process is operationally simple, mild conditions and obtained good yields with excellent α selectivity. Moreover, a multi-catalyst one-pot glycosylation can be carried out to transform the glycosyl hemiacetals directly to a various O-glycosides in high overall yields without the need for separation or purification of the α-glycosyl chloride donors.
Collapse
Affiliation(s)
- Ariza Khanam
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226 031, India
| | - Shashiprabha Dubey
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226 031, India
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Traboni S, Esposito F, Ziaco M, Bedini E, Iadonisi A. A comprehensive solvent-free approach for the esterification and amidation of carboxylic acids mediated by carbodiimides. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
3
|
Singh Y, Geringer SA, Demchenko AV. Synthesis and Glycosidation of Anomeric Halides: Evolution from Early Studies to Modern Methods of the 21st Century. Chem Rev 2022; 122:11701-11758. [PMID: 35675037 PMCID: PMC9417321 DOI: 10.1021/acs.chemrev.2c00029] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Advances in synthetic carbohydrate chemistry have dramatically improved access to common glycans. However, many novel methods still fail to adequately address challenges associated with chemical glycosylation and glycan synthesis. Since a challenge of glycosylation has remained, scientists have been frequently returning to the traditional glycosyl donors. This review is dedicated to glycosyl halides that have played crucial roles in shaping the field of glycosciences and continue to pave the way toward our understanding of chemical glycosylation.
Collapse
Affiliation(s)
- Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Scott A Geringer
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| |
Collapse
|
4
|
Traboni S, Bedini E, Silipo A, Vessella G, Iadonisi A. Solvent‐Free Glycosylation from per‐
O
‐Acylated Donors Catalyzed by Methanesulfonic Acid. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Serena Traboni
- Department of Chemical Sciences University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Emiliano Bedini
- Department of Chemical Sciences University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Alba Silipo
- Department of Chemical Sciences University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Giulia Vessella
- Department of Chemical Sciences University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Alfonso Iadonisi
- Department of Chemical Sciences University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| |
Collapse
|
5
|
Traboni S, Vessella G, Bedini E, Iadonisi A. Solvent-free, under air selective synthesis of α-glycosides adopting glycosyl chlorides as donors. Org Biomol Chem 2021; 18:5157-5163. [PMID: 32583825 DOI: 10.1039/d0ob01024c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
α-Glycosides are highly relevant synthetic targets due to their abundance in natural oligosaccharides involved in many biological processes. Nevertheless their preparation is hampered by several issues, due to both the strictly anhydrous conditions typically required in glycosylation procedures and the non-trivial achievement of high α-stereoselectivity, one of the major challenges in oligosaccharide synthesis. In this paper we report a novel and efficient approach for the highly stereoselective synthesis of α-glycosides. This is based on the unprecedented solvent-free combination of triethylphosphite, tetrabutylammonium bromide and N,N-diisopropylethylamine for the activation of glycosyl chlorides under air. Despite the relative stability of glycosyl chlorides with respect to more reactive halide donors, the solvent-free procedure allowed a wide set of α-glycosides, including biorelevant fragments, to be obtained in much shorter times compared with similar glycosylation approaches in solution. The presented method features a wide target scope and functional group compatibility, also serving with partially disarmed substrates, and it does not require a high stoichiometric excess of reagents nor the preparation of expensive precursors. The solvent-free glycosylation can be even directly performed from 1-hydroxy sugars without purification of the in situ generated chloride, providing an especially useful opportunity in the case of highly reactive and labile glycosyl donors.
Collapse
Affiliation(s)
- Serena Traboni
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, I-80126 Naples, Italy.
| | - Giulia Vessella
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, I-80126 Naples, Italy.
| | - Emiliano Bedini
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, I-80126 Naples, Italy.
| | - Alfonso Iadonisi
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, I-80126 Naples, Italy.
| |
Collapse
|
6
|
Catalytic, Regioselective Sulfonylation of Carbohydrates with Dibutyltin Oxide under Solvent-Free Conditions. Catalysts 2021. [DOI: 10.3390/catal11020202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A simple approach was developed for the solvent-free regioselective functionalization of carbohydrate polyols with 4-toluesulfonyl (tosyl) group, allowing the easy and quick activation of a saccharide site with a tosylate leaving group. The method is based on the use of catalytic dibutyltin oxide and tetrabuylammonium bromide (TBAB), and a moderate excess of N,N-diisopropylethyl amine (DIPEA) and tosyl chloride (TsCl), leading to the selective functionalization at 75 °C of a secondary equatorial hydroxy function flanked by an axial one in a pyranoside. The procedure is endowed with several advantages, such as the use of cheap reagents, experimental simplicity, and the need for reduced reaction times in comparison with other known approaches.
Collapse
|
7
|
Solvent-Free Approaches in Carbohydrate Synthetic Chemistry: Role of Catalysis in Reactivity and Selectivity. Catalysts 2020. [DOI: 10.3390/catal10101142] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Owing to their abundance in biomass and availability at a low cost, carbohydrates are very useful precursors for products of interest in a broad range of scientific applications. For example, they can be either converted into basic chemicals or used as chiral precursors for the synthesis of potentially bioactive molecules, even including nonsaccharide targets; in addition, there is also a broad interest toward the potential of synthetic sugar-containing structures in the field of functional materials. Synthetic elaboration of carbohydrates, in both the selective modification of functional groups and the assembly of oligomeric structures, is not trivial and often entails experimentally demanding approaches practiced by specialized groups. Over the last years, a large number of solvent-free synthetic methods have appeared in the literature, often being endowed with several advantages such as greenness, experimental simplicity, and a larger scope than analogous reactions in solution. Most of these methods are catalytically promoted, and the catalyst often plays a key role in the selectivity associated with the process. This review aims to describe the significant recent contributions in the solvent-free synthetic chemistry of carbohydrates, devoting a special critical focus on both the mechanistic role of the catalysts employed and the differences evidenced so far with corresponding methods in solution.
Collapse
|
8
|
Choutka J, Kratochvíl M, Zýka J, Pohl R, Parkan K. Straightforward synthesis of protected 2-hydroxyglycals by chlorination-dehydrochlorination of carbohydrate hemiacetals. Carbohydr Res 2020; 496:108086. [PMID: 32828008 DOI: 10.1016/j.carres.2020.108086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 10/23/2022]
Abstract
A straightforward and scalable method for the synthesis of protected 2-hydroxyglycals is described. The approach is based on the chlorination of carbohydrate-derived hemiacetals, followed by an elimination reaction to establish the glycal moiety. 1,2-dehydrochlorination reactions were studied on a range of glycosyl chlorides to provide suitable reaction conditions for this transformation. Benzyl ether, isopropylidene and benzylidene protecting groups, as well as interglycosidic linkage, were found to be compatible with this protocol. The described method is operationally simple and allows for the quick preparation of 2-hydroxyglycals with other than ester protecting groups, providing a feasible alternative to existing methods.
Collapse
Affiliation(s)
- Jan Choutka
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Michal Kratochvíl
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Jakub Zýka
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Gilead Sciences & IOCB Research Centre, Flemingovo Nám. 2, 166 10, Prague, Czech Republic
| | - Kamil Parkan
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic.
| |
Collapse
|
9
|
Pongener I, Nikitin K, McGarrigle EM. Synthesis of glycosyl chlorides using catalytic Appel conditions. Org Biomol Chem 2019; 17:7531-7535. [PMID: 31369028 DOI: 10.1039/c9ob01544b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The stereoselective synthesis of glycosyl chlorides using catalytic Appel conditions is described. Good yields of α-glycosyl chlorides were obtained using a range of glycosyl hemiacetals, oxalyl chloride and 5 mol% Ph3PO. For 2-deoxysugars treatment of the corresponding hemiacetals with oxalyl chloride without phosphine oxide catalyst also gave good yields of glycosyl chloride. The method is operationaly simple and the 5 mol% phosphine oxide by-product can be removed easily. Alternatively a one-pot, multi-catalyst glycosylation can be carried out to transform the glycosyl hemiacetal directly to a glycoside.
Collapse
Affiliation(s)
- Imlirenla Pongener
- Centre for Synthesis and Chemical Biology, UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Kirill Nikitin
- Centre for Synthesis and Chemical Biology, UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Eoghan M McGarrigle
- Centre for Synthesis and Chemical Biology, UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
10
|
One-pot synthesis of orthogonally protected sugars through sequential base-promoted/acid-catalyzed steps: A solvent-free approach with self-generation of a catalytic species. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.05.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
A novel dicationic ionic liquid as a highly effectual and dual-functional catalyst for the synthesis of 3-methyl-4-arylmethylene-isoxazole-5(4H)-ones. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3488-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
12
|
Tatina MB, Khong DT, Judeh ZMA. Efficient Synthesis of α-Glycosyl Chlorides Using 2-Chloro-1,3-dimethylimidazolinium Chloride: A Convenient Protocol for Quick One-Pot Glycosylation. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800360] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Madhu Babu Tatina
- School of Chemical and Biomedical Engineering; Nanyang Technological University; 62 Nanyang Drive, N1.2-B1-14 637459 Singapore Singapore
| | - Duc Thinh Khong
- School of Chemical and Biomedical Engineering; Nanyang Technological University; 62 Nanyang Drive, N1.2-B1-14 637459 Singapore Singapore
| | - Zaher M. A. Judeh
- School of Chemical and Biomedical Engineering; Nanyang Technological University; 62 Nanyang Drive, N1.2-B1-14 637459 Singapore Singapore
| |
Collapse
|
13
|
Traboni S, Bedini E, Iadonisi A. Solvent-Free Conversion of Alcohols to Alkyl Iodides and One-Pot Elaborations Thereof. ChemistrySelect 2018. [DOI: 10.1002/slct.201800130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Serena Traboni
- Department of Chemical Sciences; University of Naples Federico II; Via Cinthia 4, I - 80126 Naples Italy
| | - Emiliano Bedini
- Department of Chemical Sciences; University of Naples Federico II; Via Cinthia 4, I - 80126 Naples Italy
| | - Alfonso Iadonisi
- Department of Chemical Sciences; University of Naples Federico II; Via Cinthia 4, I - 80126 Naples Italy
| |
Collapse
|
14
|
Traboni S, Bedini E, Iadonisi A. Solvent-Free One-Pot Diversified Protection of Saccharide Polyols Via Regioselective Tritylations. ChemistrySelect 2017. [DOI: 10.1002/slct.201701033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Serena Traboni
- Department of Chemical Sciences; University of Naples Federico II; Via Cinthia 4 I-80126 Naples Italy
| | - Emiliano Bedini
- Department of Chemical Sciences; University of Naples Federico II; Via Cinthia 4 I-80126 Naples Italy
| | - Alfonso Iadonisi
- Department of Chemical Sciences; University of Naples Federico II; Via Cinthia 4 I-80126 Naples Italy
| |
Collapse
|