1
|
Mishra PS, Kumar A, Kaur K, Jaitak V. Recent Developments in Coumarin Derivatives as Neuroprotective Agents. Curr Med Chem 2024; 31:5702-5738. [PMID: 37455459 DOI: 10.2174/0929867331666230714160047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/16/2023] [Accepted: 05/23/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Neurodegenerative diseases are among the diseases that cause the foremost burden on the health system of the world. The diseases are multifaceted and difficult to treat because of their complex pathophysiology, which includes protein aggregation, neurotransmitter breakdown, metal dysregulation, oxidative stress, neuroinflammation, excitotoxicity, etc. None of the currently available therapies has been found to be significant in producing desired responses without any major side effects; besides, they only give symptomatic relief otherwise indicated off-episode relief. Targeting various pathways, namely choline esterase, monoamine oxidase B, cannabinoid system, metal chelation, β-secretase, oxidative stress, etc., may lead to neurodegeneration. By substituting various functional moieties over the coumarin nucleus, researchers are trying to produce safer and more effective neuroprotective agents. OBJECTIVES This study aimed to review the current literature to produce compounds with lower side effects using coumarin as a pharmacophore. METHODS In this review, we have attempted to compile various synthetic strategies that have been used to produce coumarin and various substitutional strategies used to produce neuroprotective agents from the coumarin pharmacophore. Moreover, structure-activity relationships of substituting coumarin scaffold at various positions, which could be instrumental in designing new compounds, were also discussed. RESULTS The literature review suggested that coumarins and their derivatives can act as neuroprotective agents following various mechanisms. CONCLUSION Various studies have demonstrated the neuroprotective activity of coumarin due to an oxaheterocyclic loop, which allows binding with a broad array of proteins, thus motivating researchers to explore its potential as a lead against various neurodegenerative diseases.
Collapse
Affiliation(s)
- Prakash Shyambabu Mishra
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), 151401, India
| | - Amit Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), 151401, India
| | - Kamalpreet Kaur
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), 151401, India
| | - Vikas Jaitak
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), 151401, India
| |
Collapse
|
2
|
Dagar N, Singh S, Raha Roy S. Synergistic Effect of Cerium in Dual Photoinduced Ligand-to-Metal Charge Transfer and Lewis Acid Catalysis: Diastereoselective Alkylation of Coumarins. J Org Chem 2022; 87:8970-8982. [PMID: 35759362 DOI: 10.1021/acs.joc.2c00677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the dual role of cerium to promote the photoinduced ligand-to-metal charge transfer (LMCT) process for the generation of the alkyl radical and subsequent Lewis acid catalysis to construct stereodefined C-C bonds. This paradigm utilized ubiquitous carboxylic acids as alkyl radical surrogates and offers excellent diastereoselectivity for the formation of C-4 alkylated coumarins in good to excellent yield. UV-vis spectroscopy studies in combination with in situ Fourier transform infrared spectroscopy are consistent with the proposed mechanism, supporting the participation of the CeIV-carboxylate complex in photoinduced LMCT and its subsequent homolysis to generate the alkyl radial through the exclusion of CO2. Finally, the oxophilicity of cerium enables a two-point complexation with the in situ generated enolate intermediate and facilitates the diastereoselective protonation to form the desired product. Furthermore, this mild and atom-economical catalytic manifolds allow the late-stage modification of pharmaceuticals.
Collapse
Affiliation(s)
- Neha Dagar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Swati Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sudipta Raha Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
3
|
Dhawale KD, Ingale AP, Pansare MS, Gaikwad SS, Thorat NM, Patil LR. Sulfated Tungstate as a Heterogeneous Catalyst for Synthesis of 3-Functionalized Coumarins under Solvent-Free Conditions. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2074477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Kiran D. Dhawale
- Department of Chemistry, Rao Bahadur Narayanrao Borawake College, Savitribai Phule Pune University, Ahmednagar, Maharashtra, India
| | - Ajit P. Ingale
- Department of Chemistry, Dada Patil College, Savitribai Phule Pune University, Ahmednagar, Maharashtra, India
| | - Madhuri S. Pansare
- Department of Chemistry, Dada Patil College, Savitribai Phule Pune University, Ahmednagar, Maharashtra, India
| | - Sanjay S. Gaikwad
- Department of Chemistry, MES, Abasaheb Garware College, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Nitin M. Thorat
- Department of Chemistry, Maharaja Jivajirao Shinde Mahavidyalaya, Savitribai Phule Pune University, Ahmednagar, Maharashtra, India
| | - Limbraj R. Patil
- Department of Chemistry, Maharaja Jivajirao Shinde Mahavidyalaya, Savitribai Phule Pune University, Ahmednagar, Maharashtra, India
| |
Collapse
|
4
|
Wang Y, Guo C, Tao S, Liu J, Zhao J, Liu N, Dai B. Basicity-Tuned Selectivity: Synthesis of Benzimidazolone and Benzodiazepine from N-Alkyl- N-(2-(pyridin-2-ylamino)-phenyl)formamides. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202107062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Kumar S, Vashisht N, Aruna, Sharma SP. One-Pot Green Synthesis of 2-Oxo-2H-chromene-3-carbonitriles Using Dual-Frequency Ultrasonication. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021090189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Synthesis and study of new 2H-pyranoquinolin-2-one-based inhibitors of blood coagulation factors Xa and XIa. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3114-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Potapov AY, Vandyshev DY, Refki Y, Ledenyova IV, Ovchinnikov OV, Smirnov MS, Shikhaliev KS. Synthesis and Luminescent Properties of 3-Acyl-6,8,8,9-tetramethyl-2H-pyrano[3,2-g]hydroquinolin-2-ones. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220070075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Zare E, Rafiee Z. Cellulose stabilized Fe
3
O
4
and carboxylate‐imidazole and Co‐based MOF growth as an exceptional catalyst for the Knoevenagel reaction. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Elham Zare
- Department of ChemistryYasouj University Yasouj 75918‐74831 Iran
| | - Zahra Rafiee
- Department of ChemistryYasouj University Yasouj 75918‐74831 Iran
| |
Collapse
|
9
|
Recent Advances in the Synthesis of Coumarin Derivatives from Different Starting Materials. Biomolecules 2020; 10:biom10010151. [PMID: 31963362 PMCID: PMC7022947 DOI: 10.3390/biom10010151] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 12/26/2022] Open
Abstract
The study of coumarin dates back to 1820 when coumarin was first extracted from tonka bean by Vogel. Compounds containing coumarin backbone are a very important group of compounds due to their usage in pharmacy and medicine. Properties and biological activities of coumarin derivatives have a significant role in the development of new drugs. Therefore, many different methods and techniques are developed in order to synthesize coumarin derivatives. Coumarin derivatives could be obtained from different starting materials with various methods but with big differences in yield. This review summarized various methods, techniques and reaction conditions for synthesis of coumarins from different compounds such as aldehydes, phenols, ketones and carboxylic acids.
Collapse
|
10
|
Francisco CS, Francisco CS, Constantino AF, Neto ÁC, Lacerda V. Synthetic Methods Applied in the Preparation of Coumarin-based Compounds. CURR ORG CHEM 2020. [DOI: 10.2174/1385272823666191121150047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coumarins (2H-chromen-2-ones) are heterocyclic compounds of wide scientific
interest due to their important biological and pharmaceutical properties such as antitumor,
antioxidant, anti-inflammatory and antimicrobial activities as well as enzymatic inhibitors
related to neurodegenerative diseases. Due to their structural variability, this compound
class has been attracting considerable interest in the natural products and synthetic organic
chemistry areas. Coumarins and their derivatives have been prepared by a variety of methods,
including Perkin, Wittig and Reformatsky reactions, Pechmann and Knoevenagel
condensations, and Claisen rearrangement, among others. In the present review we report
the different synthetic methods used in the preparation of coumarin derivatives exploited
in the last ten years (from 2008 to 2018), regarding the research demand for new structural
scaffolds.
Collapse
Affiliation(s)
- Carla S. Francisco
- Programa de Pós-Graduação em Química, Centro de Ciências Exatas, Universidade Federal do Espírito Santo, Campus Goiabeiras, Vitória, Brazil
| | - Cristina S. Francisco
- Programa de Pós-Graduação em Química, Centro de Ciências Exatas, Universidade Federal do Espírito Santo, Campus Goiabeiras, Vitória, Brazil
| | | | - Álvaro Cunha Neto
- Programa de Pós-Graduação em Química, Centro de Ciências Exatas, Universidade Federal do Espírito Santo, Campus Goiabeiras, Vitória, Brazil
| | - Valdemar Lacerda
- Programa de Pós-Graduação em Química, Centro de Ciências Exatas, Universidade Federal do Espírito Santo, Campus Goiabeiras, Vitória, Brazil
| |
Collapse
|
11
|
Khaligh NG, Mihankhah T, Johan MR. One-Pot Synthesis of Coumarins Using 1,1′-Butylenebis (3-sulfo-3H-imidazol-1-ium) Chloride as an Efficient Task-Specific Ionic Liquid. Polycycl Aromat Compd 2019. [DOI: 10.1080/10406638.2019.1695215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Nader Ghaffari Khaligh
- Nanotechnology and Catalysis Research Center, Institute of Postgraduate Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Taraneh Mihankhah
- Faculty of Engineering, Civil Engineering Department, Kharazmi University, Tehran, Iran
| | - Mohd Rafie Johan
- Nanotechnology and Catalysis Research Center, Institute of Postgraduate Studies, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Rupanawar BD, Veetil SM, Suryavanshi G. Oxidative Olefination of Benzylamine with an Active Methylene Compound Mediated by Hypervalent Iodine (III). European J Org Chem 2019. [DOI: 10.1002/ejoc.201900970] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Bapurao D. Rupanawar
- Chemical Engineering & Process Development Division; CSIR-National Chemical Laboratory; Dr. Homi Bhaba Road, Pashan, Pune- 411008 Maharashtra India
- Academy of Scientifc and Innovative Research (AcSIR); 201002 Ghaziabad, Uttar Pradesh India
| | - Sruthi M. Veetil
- CSIR-National Chemical Laboratory; Central NMR Facility; Dr. Homi Bhaba Road, Pashan, Pune- 411008 Maharashtra India
| | - Gurunath Suryavanshi
- Chemical Engineering & Process Development Division; CSIR-National Chemical Laboratory; Dr. Homi Bhaba Road, Pashan, Pune- 411008 Maharashtra India
- Academy of Scientifc and Innovative Research (AcSIR); 201002 Ghaziabad, Uttar Pradesh India
| |
Collapse
|
13
|
Yang L, Zhu J, Xie F, Peng X, Lin B, Liu Y, Cheng M. Solvent-Free FeCl3-Assisted Electrophilic Fluorine-Catalyzed Knoevenagel Condensation to Yield α,β-Unsaturated Dicarbonyl Compounds and Coumarins. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1070428019070236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Akhlaghinia B, Sanati P, Mohammadinezhad A, Zarei Z. The magnetic nanostructured natural hydroxyapatite (HAP/Fe3O4 NPs): an efficient, green and recyclable nanocatalyst for the synthesis of biscoumarin derivatives under solvent-free conditions. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03788-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Zhen X, Wan X, Zhang W, Li Q, Zhang-Negrerie D, Du Y. Synthesis of Spirooxindoles from N-Arylamide Derivatives via Oxidative C(sp2)–C(sp3) Bond Formation Mediated by PhI(OMe)2 Generated in Situ. Org Lett 2019; 21:890-894. [DOI: 10.1021/acs.orglett.8b03741] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaohua Zhen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Xintong Wan
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Wei Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Qiao Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Daisy Zhang-Negrerie
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
16
|
Synthesis, molecular docking studies and biological evaluation of potent coumarin–carbonodithioate hybrids via microwave irradiation. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cdc.2018.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Singh G, Singh A, Satija P, Chowdhary K. The first report of the synthesis of organo-functionalized triethoxysilanes via a Knoevenagel condensation approach. NEW J CHEM 2018. [DOI: 10.1039/c8nj02168f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present work involves the design of a new synthetic pathway for the preparation of organo-functionalized triethoxysilanes (OTES) via Knoevenagel condensation.
Collapse
Affiliation(s)
- Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies
- Panjab University
- Chandigarh
- India
| | - Akshpreet Singh
- Department of Chemistry and Centre of Advanced Studies
- Panjab University
- Chandigarh
- India
| | - Pinky Satija
- Department of Chemistry and Centre of Advanced Studies
- Panjab University
- Chandigarh
- India
| | - Kavita Chowdhary
- Department of Chemistry and Centre of Advanced Studies
- Panjab University
- Chandigarh
- India
| |
Collapse
|
18
|
Zhang Q, Ma XM, Wei HX, Zhao X, Luo J. Covalently anchored tertiary amine functionalized ionic liquid on silica coated nano-Fe3O4 as a novel, efficient and magnetically recoverable catalyst for the unsymmetrical Hantzsch reaction and Knoevenagel condensation. RSC Adv 2017. [DOI: 10.1039/c7ra10692k] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel MNP-supported basic IL catalyst was prepared and used as a magnetically recoverable catalyst for Hantzsch and Knoevenagel condensation.
Collapse
Affiliation(s)
- Qiang Zhang
- Jiangsu Key Laboratory of Environmental Functional Materials
- School of Chemistry, Biology and Material Engineering
- Suzhou University of Science and Technology
- Suzhou 215009
- China
| | - Xiao-Ming Ma
- School of Pharmaceutical Engineering & Life Science
- Changzhou University
- Changzhou 213164
- China
| | - Huai-Xin Wei
- Jiangsu Key Laboratory of Environmental Functional Materials
- School of Chemistry, Biology and Material Engineering
- Suzhou University of Science and Technology
- Suzhou 215009
- China
| | - Xin Zhao
- Jiangsu Key Laboratory of Environmental Functional Materials
- School of Chemistry, Biology and Material Engineering
- Suzhou University of Science and Technology
- Suzhou 215009
- China
| | - Jun Luo
- School of Chemical Engineering
- Nanjing University of Science & Technology
- Nanjing 210094
- China
| |
Collapse
|