1
|
Nakamura S, Sugimoto S, Yoneda T, Shinozaki A, Yoshiji M, Matsumoto T, Nakashima S, Matsuda H. Antiproliferative Activities of Diterpenes from Leaves of Isodon trichocarpus against Cancer Stem Cells. Chem Pharm Bull (Tokyo) 2023; 71:502-507. [PMID: 37394598 DOI: 10.1248/cpb.c22-00914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Two new diterpenes named trichoterpene I (1) and trichoterpene II (2) were isolated from the extract from the leaves of Isodon trichocarpus together with 19 known diterpenes. Their chemical structures were elucidated on the basis of chemical and physicochemical properties. Among them, oridonin (3), effusanin A (4), and lasiokaurin (9) with the α,β-unsaturated carbonyl moiety showed antiproliferative activities against breast cancer MDA-MB-231 and human astrocytoma U-251 MG cells [i.e., non-cancer stem cells (non-CSCs)] and their cancer stem cells (CSCs) isolated by sphere formation. In particular, compound 4 (IC50 = 0.51 µM) showed a higher antiproliferative activity against MDA-MB-231 CSCs than against MDA-MB-231 non-CSCs. The antiproliferative activity toward CSCs of compound 4 was equal to adriamycin (positive control, IC50 = 0.60 µM).
Collapse
Affiliation(s)
| | - Sachiko Sugimoto
- Kyoto Pharmaceutical University
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | | | | | | | | | | | | |
Collapse
|
2
|
Xing H, An L, Song Z, Li S, Wang H, Wang C, Zhang J, Tuerhong M, Abudukeremu M, Li D, Lee D, Xu J, Lall N, Guo Y. Anti-Inflammatory ent-Kaurane Diterpenoids from Isodon serra. JOURNAL OF NATURAL PRODUCTS 2020; 83:2844-2853. [PMID: 32993289 DOI: 10.1021/acs.jnatprod.9b01281] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ten new ent-kaurane diterpenoids, including two pairs of epimers 1/2 and 4/5 and a 6,7-seco-ent-kauranoid 10, were obtained from the aerial parts of Isodon serra. The structures of the new compounds were confirmed by extensive spectroscopic methods and electronic circular dichroism (ECD) data analysis. An anti-inflammatory assay was applied to evaluate their nitric oxide (NO) inhibitory activities by using LPS-stimulated BV-2 cells. Compounds 1 and 9 exhibited notable NO production inhibition with IC50 values of 15.6 and 7.3 μM, respectively. Moreover, the interactions of some bioactive diterpenoids with inducible nitric oxide synthase (iNOS) were explored by employing molecular docking studies.
Collapse
Affiliation(s)
- Honghong Xing
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Lijun An
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Ziteng Song
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Shanshan Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Huimei Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Chunyan Wang
- Tianjin Second People's Hospital, Tianjin 300192, People's Republic of China
| | - Jie Zhang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| | - Muhetaer Tuerhong
- College of Chemistry and Environmental Sciences, Kashgar University, Kashgar 844000, People's Republic of China
| | - Munira Abudukeremu
- College of Chemistry and Environmental Sciences, Kashgar University, Kashgar 844000, People's Republic of China
| | - Dihua Li
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Nankai Hospital Affiliated to Nankai University, Tianjin 300100, People's Republic of China
| | - Dongho Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Namrita Lall
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| |
Collapse
|
3
|
Matsumoto T, Imahori D, Saito Y, Zhang W, Ohta T, Yoshida T, Nakayama Y, Ashihara E, Watanabe T. Cytotoxic activities of sesquiterpenoids from the aerial parts of Petasites japonicus against cancer stem cells. J Nat Med 2020; 74:689-701. [DOI: 10.1007/s11418-020-01420-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/02/2020] [Indexed: 01/28/2023]
|
4
|
Matsumoto T, Watanabe T. Isolation and structure elucidation of constituents of Citrus limon, Isodon japonicus, and Lansium domesticum as the cancer prevention agents. Genes Environ 2020; 42:17. [PMID: 32322316 PMCID: PMC7164196 DOI: 10.1186/s41021-020-00156-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/04/2020] [Indexed: 11/10/2022] Open
Abstract
In the course of our research to investigate the cancer prevention potency of natural products derived from plant materials, we isolated fifty-five compounds, including twenty-one new compounds from the peels of Citrus limon, aerial parts of Isodon japonicus, and leaves of Lansium domesticum. The chemical structures of the isolated compounds were elucidated by chemical/physicochemical evidence, and nuclear magnetic resonance spectroscopy and mass spectrometry results. Moreover, the absolute stereochemistry of the new compounds were elucidated by various techniques such as chemical synthesis, modified Mosher’s method, Cu-Kα X-ray crystallographic analysis, and comparison of experimental and predicted electronic circular dichroism data. The antimutagenic effects of the isolated and structure-elucidated compounds against heterocyclic amines, 3-amino-1,4-dimethyl-5H-pyrido [4,3-b]indole (Trp-P-1) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), were evaluated by the Ames test and in vivo micronucleus test. In this review, we present the comprehensive results of the antimutagenic effects of the isolated natural products.
Collapse
Affiliation(s)
- Takahiro Matsumoto
- Department of Public Health, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412 Japan
| | - Tetsushi Watanabe
- Department of Public Health, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412 Japan
| |
Collapse
|
5
|
Hydrogen sulfide releasing oridonin derivatives induce apoptosis through extrinsic and intrinsic pathways. Eur J Med Chem 2020; 187:111978. [DOI: 10.1016/j.ejmech.2019.111978] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023]
|
6
|
Liu YL, Zhang LX, Wu H, Chen SQ, Li J, Dai LP, Wang ZM. Four New ent-Kaurane Diterpene Glycosides from Isodon henryi. Molecules 2019; 24:molecules24152736. [PMID: 31357638 PMCID: PMC6695894 DOI: 10.3390/molecules24152736] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/12/2019] [Accepted: 07/19/2019] [Indexed: 12/20/2022] Open
Abstract
To obtain diterpene glycosides from an aqueous extract of the aerial parts of Isodon henryi and further investigate their cytotoxicities, in this study, a total of seven compounds were isolated, including six ent-kaurane diterpene glycosides (1-6) and one diterpene aglycon (7). Among the seven ent-kaurane diterpenes obtained, four were novel compounds, including ent-7,20-epoxy- kaur-16-en-1α,6β,7β,15β-tetrahydroxyl-11-O-β-d-glucopyranoside (1), ent-7,20-epoxy-kaur-16-en- 6β,7β,14β,15β-tetrahydroxyl-1-O-β-d-glucopyranoside (2), ent-7,20-epoxy-kaur-16-en-6β,7β,15β- trihydroxyl-1-O-β-d-glucopyranoside (3), and ent-7,20-epoxy-kaur-16-en-7β,11β,14α,15β-tetrahydr- oxyl-6-O-β-d-glucopyranoside (4), and three were isolated from this plant for the first time (5-7). Their structures were elucidated by utilizing spectroscopic methods and electronic circular dichroism analyses. Furthermore, the cytotoxicities of all seven compounds were investigated in four human cancer cell lines, including A2780, BGC-823, HCT-116, and HepG2. The IC50 values of these diterpenes ranged from 0.18 to 2.44 mM in the tested cell lines. In addition, the structure-cytotoxicity relationship of diterpene glycosides was also evaluated to study the effect of glycosylation on the cytotoxicity of diterpene compounds.
Collapse
Affiliation(s)
- Ya-Lin Liu
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
- Research Center for Classic Chinese Medines & Health Herbal Products, Zhengzhou 450046, China
| | - Ling-Xia Zhang
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Hong Wu
- Laboratory of Cell Imaging, Henan University of Chinese Medicine, Zhengzhou 450002, China
| | - Sui-Qing Chen
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Jun Li
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Li-Ping Dai
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China.
- Research Center for Classic Chinese Medines & Health Herbal Products, Zhengzhou 450046, China.
| | - Zhi-Min Wang
- Research Center for Classic Chinese Medines & Health Herbal Products, Zhengzhou 450046, China.
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
7
|
Hu X, Bai Z, Qiao J, Li H, Xu S, Wang X, Xu Y, Xu J, Hua H, Li D. Effective enmein-type mimics of clinical candidate HAO472: Design, synthesis and biological evaluation. Eur J Med Chem 2019; 171:169-179. [DOI: 10.1016/j.ejmech.2019.03.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/05/2019] [Accepted: 03/18/2019] [Indexed: 12/20/2022]
|
8
|
Structures of triterpenoids from the leaves of Lansium domesticum. J Nat Med 2019; 73:727-734. [DOI: 10.1007/s11418-019-01319-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/07/2019] [Indexed: 10/26/2022]
|
9
|
Hanson JR, Nichols T, Mukhrish Y, Bagley MC. Diterpenoids of terrestrial origin. Nat Prod Rep 2019; 36:1499-1512. [DOI: 10.1039/c8np00079d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review covers the isolation and chemistry of diterpenoids from terrestrial sources from 2017.
Collapse
Affiliation(s)
- James R. Hanson
- Department of Chemistry
- School of Life Sciences
- University of Sussex
- East Sussex
- UK
| | - Tyler Nichols
- Department of Chemistry
- School of Life Sciences
- University of Sussex
- East Sussex
- UK
| | - Yousef Mukhrish
- Department of Chemistry
- School of Life Sciences
- University of Sussex
- East Sussex
- UK
| | - Mark C. Bagley
- Department of Chemistry
- School of Life Sciences
- University of Sussex
- East Sussex
- UK
| |
Collapse
|
10
|
Li H, Jiao R, Mu J, Xu S, Li X, Wang X, Li Z, Xu J, Hua H, Li D. Bioactive Natural Spirolactone-Type 6,7- seco- ent-Kaurane Diterpenoids and Synthetic Derivatives. Molecules 2018; 23:molecules23112914. [PMID: 30413071 PMCID: PMC6278314 DOI: 10.3390/molecules23112914] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023] Open
Abstract
Diterpenoids are widely distributed natural products and have caused considerable interest because of their unique skeletons and antibacterial and antitumor activities and so on. In light of recent discoveries, ent-kaurane diterpenoids, which exhibit a wide variety of biological activities, such as anticancer and anti-inflammatory activities, pose enormous potential to serve as a promising candidate for drug development. Among them, spirolactone-type 6,7-seco-ent-kaurane diterpenoids, with interesting molecular skeleton, complex oxidation patterns, and bond formation, exhibit attractive activities. Furthermore, spirolactone-type diterpenoids have many modifiable sites, which allows for linking to various substituents, suitable for further medicinal study. Hence, some structurally modified derivatives with improved cytotoxicity activities are also achieved. In this review, natural bioactive spirolactone-type diterpenoids and their synthetic derivatives were summarized.
Collapse
Affiliation(s)
- Haonan Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Runwei Jiao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jiahui Mu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Shengtao Xu
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Xu Li
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China.
| | - Xianhua Wang
- School of Public Health, Qingdao University, Qingdao 266021, China.
| | - Zhanlin Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jinyi Xu
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
11
|
Zhao F, Sun M, Zhang W, Jiang C, Teng J, Sheng W, Li M, Zhang A, Duan Y, Xue J. Comparative transcriptome analysis of roots, stems and leaves of Isodon amethystoides reveals candidate genes involved in Wangzaozins biosynthesis. BMC PLANT BIOLOGY 2018; 18:272. [PMID: 30409115 PMCID: PMC6225716 DOI: 10.1186/s12870-018-1505-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 10/26/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Isodon amethystoides (Ben-th) Cy Wu et Hsuan is an important traditional medicinal plant endowed with pharmacological properties effective in the treatment of various diseases, including pulmonary tuberculosis. The tetracyclic diterpenoids, Wangzaozins (Wangzaozin A, glaucocalyxin A, glaucocalyxin B), are the major bioactive compounds of I. amethystoides. However, the molecular information about the biosynthesis of these compounds still remains unclear. RESULTS An examination of the accumulated levels of Wangzaozins in I. amethystoides revealed considerable variations in the root, stem, and leaf tissues of this plant, indicating possible differences in metabolite biosynthesis and accumulation among various tissues. To better elucidate the tetracyclic diterpenoid biosynthesis pathway, we generated transcriptome sequences from the root, stem, and leaf tissues, and performed de novo sequence assembly, yielding 230,974 transcripts and 114,488 unigenes, with average N50 lengths of 1914 and 1241 bp, respectively. Putative functions could be assigned to 73,693 transcripts (31.9%) based on BLAST searches against annotation databases, including GO, KEGG, Swiss-Prot, NR, and Pfam. Moreover, the candidate genes involving in the diterpenoid biosynthesis, such as CPS, KSL, were also analyzed. The expression profiles of eight transcripts, involving the tetracyclic diterpenoid biosynthesis, were validated in different I. amethystoides tissues by qRT-PCR, unraveling the gene expression profile of the pathway. The differential expressions of ISPD, ISPF and ISPH (MEP pathway), and IaCPS and IaKSL (diterpenoid pathway) candidate genes in leaves and roots, may contribute to the high accumulation of Wangzaozins in I. amethystoides leaves. CONCLUSION The genomic dataset and analyses reported here lay the foundations for further research on this important medicinal plant.
Collapse
Affiliation(s)
- Fenglan Zhao
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei City, China
| | - Mengchu Sun
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei City, China
| | - Wanjun Zhang
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei City, China
| | - Chunli Jiang
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei City, China
| | - Jingtong Teng
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei City, China
| | - Wei Sheng
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei City, China
| | - Mingzhi Li
- Genepioneer Biotechnologies Co. Ltd, Nanjing City, China
| | - Aimin Zhang
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei City, China
| | - Yongbo Duan
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei City, China.
| | - Jianping Xue
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei City, China.
| |
Collapse
|
12
|
Matsumoto T, Kitagawa T, Teo S, Anai Y, Ikeda R, Imahori D, Ahmad HSB, Watanabe T. Structures and Antimutagenic Effects of Onoceranoid-Type Triterpenoids from the Leaves of Lansium domesticum. JOURNAL OF NATURAL PRODUCTS 2018; 81:2187-2194. [PMID: 30335380 DOI: 10.1021/acs.jnatprod.8b00341] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A methanol extract of the dried leaves of Lansium domesticum showed antimutagenic effects against 3-amino-1,4-dimethyl-5 H-pyrido[4,3- b]indole (Trp-P-1) and 2-amino-1-methyl-6-phenylimidazo[4,5- bI]pyridine (PhIP) using the Ames assay. Nine new onoceranoid-type triterpenoids, lansium acids I-IX (1-9), and nine known compounds (10-16) were isolated from the extract. The structures of the new compounds were elucidated on the basis of chemical and spectroscopic evidence. The absolute stereostructures of the new compounds were determined via their electronic circular dichroism spectra. Several isolated onoceranoid-type triterpeneoids showed antimutagenic effects in an in vitro Ames assay. Moreover, oral intake of a major constituent, lansionic acid (10), showed antimutagenic effects against PhIP in an in vivo micronucleus test.
Collapse
Affiliation(s)
- Takahiro Matsumoto
- Kyoto Pharmaceutical University , Misasagi, Yamashina-ku, Kyoto 607-8412 , Japan
| | - Takahiro Kitagawa
- Kyoto Pharmaceutical University , Misasagi, Yamashina-ku, Kyoto 607-8412 , Japan
| | - Stephen Teo
- Forest Department Sarawak , Wisma Sumber Alam, Jalan Stadium, Petra Jaya, 93660 Kuching , Sarawak , Malaysia
| | - Yuuka Anai
- Kyoto Pharmaceutical University , Misasagi, Yamashina-ku, Kyoto 607-8412 , Japan
| | - Risa Ikeda
- Kyoto Pharmaceutical University , Misasagi, Yamashina-ku, Kyoto 607-8412 , Japan
| | - Daisuke Imahori
- Kyoto Pharmaceutical University , Misasagi, Yamashina-ku, Kyoto 607-8412 , Japan
| | - Haji Sapuan Bin Ahmad
- Forest Department Sarawak , Wisma Sumber Alam, Jalan Stadium, Petra Jaya, 93660 Kuching , Sarawak , Malaysia
| | - Tetsushi Watanabe
- Kyoto Pharmaceutical University , Misasagi, Yamashina-ku, Kyoto 607-8412 , Japan
| |
Collapse
|
13
|
Li H, Sun B, Wang M, Hu X, Gao X, Xu S, Xu Y, Xu J, Hua H, Li D. Bioactive enmein-type 6,7-seco-ent-kaurane diterpenoids: natural products, synthetic derivatives and apoptosis related mechanism. Arch Pharm Res 2018; 41:1051-1061. [DOI: 10.1007/s12272-018-1078-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/15/2018] [Indexed: 12/12/2022]
|