1
|
Reynes J, Leon F, García F. Mechanochemistry for Organic and Inorganic Synthesis. ACS ORGANIC & INORGANIC AU 2024; 4:432-470. [PMID: 39371328 PMCID: PMC11450734 DOI: 10.1021/acsorginorgau.4c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 10/08/2024]
Abstract
In recent years, mechanochemistry has become an innovative and sustainable alternative to traditional solvent-based synthesis. Mechanochemistry rapidly expanded across a wide range of chemistry fields, including diverse organic compounds and active pharmaceutical ingredients, coordination compounds, organometallic complexes, main group frameworks, and technologically relevant materials. This Review aims to highlight recent advancements and accomplishments in mechanochemistry, underscoring its potential as a viable and eco-friendly alternative to conventional solution-based methods in the field of synthetic chemistry.
Collapse
Affiliation(s)
- Javier
F. Reynes
- Departamento
de Química Orgánica e Inorgánica. Facultad de
Química. Universidad de Oviedo. Ave. Julián Clavería
8, 33006 Oviedo, Asturias Spain
| | - Felix Leon
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica and Centro de Innovación en Química
Avanzada (ORFEO−CINQA), Consejo Superior de Investigaciones, Científicas (CSIC) and Universidad de Sevilla, Avenida Américo Vespucio
49, 41092 Sevilla, Spain
| | - Felipe García
- School
of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
2
|
Arfelis S, Martín-Perales AI, Nguyen R, Pérez A, Cherubin I, Len C, Malpartida I, Bala A, Fullana-I-Palmer P. Linking mechanochemistry with the green chemistry principles: Review article. Heliyon 2024; 10:e34655. [PMID: 39148985 PMCID: PMC11325060 DOI: 10.1016/j.heliyon.2024.e34655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/22/2024] [Accepted: 07/14/2024] [Indexed: 08/17/2024] Open
Abstract
The need to explore contemporary alternatives for industrial production has driven the development of innovative techniques that address critical limitations linked to traditional batch mechanochemistry. One particularly promising strategy involves the integration of flow processes with mechanochemistry. Three noteworthy technologies in this domain are single-screw extrusion (SSE) and twin-screw extrusion (TSE) and Impact (Induction) in Continuous-flow Heated Mechanochemistry (ICHeM). These technologies go beyond the industrial production of polymers, extending to the synthesis of active pharmaceutical ingredients, the fabrication of (nano)materials, and the extraction of high-added value products through the valorisation of biomass and waste materials. In accordance with the principles of green chemistry, ball milling processes are generally considered greener compared to conventional solvothermal processes. In fact, ball milling processes require less solvent, enhance reaction rates and reaction conversion by increasing surface area and substituting thermal energy with mechanochemical energy, among others. Special attention will be given to the types of products, reactants, size of the milling balls and reaction conditions, selecting 60 articles after applying a screening methodology during the period 2020-2022. This paper aims to compile and analyze the cutting edge of research in utilizing mechanochemistry for green chemistry applications.
Collapse
Affiliation(s)
- Sergi Arfelis
- UNESCO Chair in Life Cycle and Climate Change ESCI-UPF, Pg. Pujades 1, 08003, Barcelona, Spain
- Deasyl, S.A., Plan-les-Ouates, Geneva, Switzerland
- University Pompeu Fabra, Barcelona, Spain
| | - Ana I Martín-Perales
- Deasyl, S.A., Plan-les-Ouates, Geneva, Switzerland
- Departamento de Química Orgánica, Campus Universitario de Rabanales, Edificio Marie Curie C3, Universidad de Córdoba, Crta. Nnal IV-A, km 396, E-14014, Córdoba, Spain
| | - Remy Nguyen
- Chimie ParisTech, Institute of Chemistry for Life and Health Sciences, CNRS, PSL Research University, 11 rue Pierre et Marie Curie, Paris, F-75005, France
| | | | - Igor Cherubin
- Deasyl, S.A., Plan-les-Ouates, Geneva, Switzerland
- Polytechnique Montreal, Département de Génie Chimique, 2500, chemin de Polytechnique, Montréal, Québec, H3T 1J4, Canada
| | - Christophe Len
- Chimie ParisTech, Institute of Chemistry for Life and Health Sciences, CNRS, PSL Research University, 11 rue Pierre et Marie Curie, Paris, F-75005, France
- Université de Technologie de Compiegne, CS 60319, Compiegne Cedex, 60203, France
| | - Irene Malpartida
- Deasyl, S.A., Plan-les-Ouates, Geneva, Switzerland
- Universidad de Málaga, Departamento Química Inorgánica, Cristalografía y Mineralogía, Av. de Cervantes 2, 29016, Málaga, Spain
| | - Alba Bala
- UNESCO Chair in Life Cycle and Climate Change ESCI-UPF, Pg. Pujades 1, 08003, Barcelona, Spain
- University Pompeu Fabra, Barcelona, Spain
| | - Pere Fullana-I-Palmer
- UNESCO Chair in Life Cycle and Climate Change ESCI-UPF, Pg. Pujades 1, 08003, Barcelona, Spain
- University Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
3
|
Templ J, Schnürch M. Strategies for Using Quaternary Ammonium Salts as Alternative Reagents in Alkylations. Chemistry 2024; 30:e202400675. [PMID: 38587031 DOI: 10.1002/chem.202400675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/09/2024]
Abstract
Alkylation reactions are pivotal in organic chemistry, with wide-ranging utilization across various fields of applied synthetic chemistry. However, conventional reagents employed in alkylations often pose substantial health and exposure risks. Quaternary ammonium salts (QAS) present a promising alternative for these transformations offering significantly reduced hazards as they are non-cancerogenic, non-mutagenic, non-flammable, and non-corrosive. Despite their potential, their use in direct organic transformations remains relatively unexplored. This review outlines strategies for utilizing QAS as alternative reagents in alkylation reactions, providing researchers with safer approaches to chemical synthesis.
Collapse
Affiliation(s)
- Johanna Templ
- TU Wien, Institute of Applied Synthetic Chemistry, Getreidemarkt 9/163, 1060, Wien, AUSTRIA
| | - Michael Schnürch
- TU Wien, Institute of Applied Synthetic Chemistry, Getreidemarkt 9/163, 1060, Wien, AUSTRIA
| |
Collapse
|
4
|
Templ J, Schnürch M. Allylation of C-, N-, and O-Nucleophiles via a Mechanochemically-Driven Tsuji-Trost Reaction Suitable for Late-Stage Modification of Bioactive Molecules. Angew Chem Int Ed Engl 2024; 63:e202314637. [PMID: 37931225 PMCID: PMC10952285 DOI: 10.1002/anie.202314637] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/08/2023]
Abstract
We present the first solvent-free, mechanochemical protocol for a palladium-catalyzed Tsuji-Trost allylation. This approach features exceptionally low catalyst loadings (0.5 mol %), short reaction times (<90 min), and a simple setup, eliminating the need for air or moisture precautions, making the process highly efficient and environmentally benign. We introduce solid, nontoxic, and easy-to-handle allyl trimethylammonium salts as valuable alternative to volatile or hazardous reagents. Our approach enables the allylation of various O-, N-, and C-nucleophiles in yields up to 99 % even for structurally complex bioactive compounds, owing to its mild conditions and exceptional functional group tolerance.
Collapse
Affiliation(s)
- Johanna Templ
- Institute of Applied Synthetic Chemistry, TU WienGetreidemarkt 9/E1631060ViennaAustria
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry, TU WienGetreidemarkt 9/E1631060ViennaAustria
| |
Collapse
|
5
|
Templ J, Schnürch M. Allylation of C-, N-, and O-Nucleophiles via a Mechanochemically-Driven Tsuji-Trost Reaction Suitable for Late-Stage Modification of Bioactive Molecules. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 136:e202314637. [PMID: 38516646 PMCID: PMC10953357 DOI: 10.1002/ange.202314637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Indexed: 03/23/2024]
Abstract
We present the first solvent-free, mechanochemical protocol for a palladium-catalyzed Tsuji-Trost allylation. This approach features exceptionally low catalyst loadings (0.5 mol %), short reaction times (<90 min), and a simple setup, eliminating the need for air or moisture precautions, making the process highly efficient and environmentally benign. We introduce solid, nontoxic, and easy-to-handle allyl trimethylammonium salts as valuable alternative to volatile or hazardous reagents. Our approach enables the allylation of various O-, N-, and C-nucleophiles in yields up to 99 % even for structurally complex bioactive compounds, owing to its mild conditions and exceptional functional group tolerance.
Collapse
Affiliation(s)
- Johanna Templ
- Institute of Applied Synthetic Chemistry, TU WienGetreidemarkt 9/E1631060ViennaAustria
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry, TU WienGetreidemarkt 9/E1631060ViennaAustria
| |
Collapse
|
6
|
Báti G, Csókás D, Stuparu MC. Mechanochemical Scholl Reaction on Phenylated Cyclopentadiene Core: One-Step Synthesis of Fluoreno[5]helicenes. Chemistry 2024; 30:e202302971. [PMID: 37870299 DOI: 10.1002/chem.202302971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 10/24/2023]
Abstract
In this study, we explore feasibility of the mechanochemical approach in the synthesis of tetrabenzofluorenes (fluoreno[5]helicenes). For this, commercially available phenylated cyclopentadiene precursors are subjected to the Scholl reaction in the solid state using FeCl3 as an oxidant and sodium chloride as the solid reaction medium. This ball milling process gave access to the 5-membered ring containing-helicenes in one synthetic step in high (95-96 %) isolated yields. The solution-phase reactions, however, were found to be moderate to low yielding in this regard (10-40 %).
Collapse
Affiliation(s)
- Gábor Báti
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Dániel Csókás
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Mihaiela C Stuparu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| |
Collapse
|
7
|
Jicsinszky L, Bucciol F, Chaji S, Cravotto G. Mechanochemical Degradation of Biopolymers. Molecules 2023; 28:8031. [PMID: 38138521 PMCID: PMC10745761 DOI: 10.3390/molecules28248031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Mechanochemical treatment of various organic molecules is an emerging technology of green processes in biofuel, fine chemicals, or food production. Many biopolymers are involved in isolating, derivating, or modifying molecules of natural origin. Mechanochemistry provides a powerful tool to achieve these goals, but the unintentional modification of biopolymers by mechanochemical manipulation is not always obvious or even detectable. Although modeling molecular changes caused by mechanical stresses in cavitation and grinding processes is feasible in small model compounds, simulation of extrusion processes primarily relies on phenomenological approaches that allow only tool- and material-specific conclusions. The development of analytical and computational techniques allows for the inline and real-time control of parameters in various mechanochemical processes. Using artificial intelligence to analyze process parameters and product characteristics can significantly improve production optimization. We aim to review the processes and consequences of possible chemical, physicochemical, and structural changes.
Collapse
Affiliation(s)
- László Jicsinszky
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (F.B.); (S.C.)
| | | | | | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (F.B.); (S.C.)
| |
Collapse
|
8
|
Margetić D. Recent applications of mechanochemistry in synthetic organic chemistry. PURE APPL CHEM 2023. [DOI: 10.1515/pac-2022-1202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Abstract
The promotion of chemical reactions by an unconventional energy source, mechanical energy (mechanochemistry) has increasing number of applications in organic synthesis. The advantages of mechanochemistry are versatile, from reduction of solvent use, increase of reaction efficiency to better environmental sustainability. This paper gives a short review on the recent developments in the fast growing field of organic mechanochemistry which are illustrated by selected examples.
Collapse
Affiliation(s)
- Davor Margetić
- Laboratory for Physical Organic Chemistry, Division of Organic Chemistry and Biochemistry , Ruđer Bošković Institute , Bijenička c. 54 , 10000 Zagreb , Croatia
| |
Collapse
|
9
|
Némethová V, Krištofíková D, Mečiarová M, Šebesta R. Asymmetric Organocatalysis Under Mechanochemical Conditions. CHEM REC 2023:e202200283. [PMID: 36703542 DOI: 10.1002/tcr.202200283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/05/2023] [Indexed: 01/28/2023]
Abstract
Asymmetric organocatalysis is a robust methodology providing access to numerous valuable compounds while having green chemistry principles in mind. The realization of organocatalytic transformation under solvent-free mechanochemical conditions brings additional benefits in terms of yields, selectivities, and, last but not least overall improved sustainability. This overview describes developments in the use of mechanochemistry as a vehicle for asymmetric organocatalytic transformations. The material is organized according to main catalytic activation modes, starting with covalent activation and proceeding to non-covalent activation modes. The advantages of mechanochemical organocatalytic reactions are particularly highlighted, but in some cases also, limitations are mentioned. Possibilities for target compound synthesis are also discussed.
Collapse
Affiliation(s)
- Viktória Némethová
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Dominika Krištofíková
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Mária Mečiarová
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Radovan Šebesta
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| |
Collapse
|
10
|
Boldyreva E. Spiers Memorial Lecture: Mechanochemistry, tribochemistry, mechanical alloying - retrospect, achievements and challenges. Faraday Discuss 2023; 241:9-62. [PMID: 36519434 DOI: 10.1039/d2fd00149g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The paper presents a view on the achievements, challenges and prospects of mechanochemistry. The extensive reference list can serve as a good entry point to a plethora of mechanochemical literature.
Collapse
Affiliation(s)
- Elena Boldyreva
- Boreskov Institute of Catalysis SB RAS & Novosibirsk State University, Novosibirsk, Russian Federation.
| |
Collapse
|
11
|
Green Strategies for the Preparation of Enantiomeric 5-8-Membered Carbocyclic β-Amino Acid Derivatives through CALB-Catalyzed Hydrolysis. Molecules 2022; 27:molecules27082600. [PMID: 35458798 PMCID: PMC9032184 DOI: 10.3390/molecules27082600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
Candida antarctica lipase B-catalyzed hydrolysis of carbocyclic 5−8-membered cis β-amino esters was carried out in green organic media, under solvent-free and ball-milling conditions. In accordance with the high enantioselectivity factor (E > 200) observed in organic media, the preparative-scale resolutions of β-amino esters were performed in tBuOMe at 65 °C. The unreacted β-amino ester enantiomers (1R,2S) and product β-amino acid enantiomers (1S,2R) were obtained with modest to excellent enantiomeric excess (ee) values (ees > 62% and eep > 96%) and in good chemical yields (>25%) in one or two steps. The enantiomers were easily separated by organic solvent/H2O extraction.
Collapse
|
12
|
Manipulating Reaction Energy Coordinate Landscape of Mechanochemical Diaza-Cope Rearrangement. Molecules 2022; 27:molecules27082570. [PMID: 35458767 PMCID: PMC9027841 DOI: 10.3390/molecules27082570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
Chiral vicinal diamines, a unique class of optically-active building blocks, play a crucial role in material design, pharmaceutical, and catalysis. Traditionally, their syntheses are all solvent-based approaches, which make organic solvent an indispensable part of their production. As part of our program aiming to develop chemical processes with reduced carbon footprints, we recently reported a highly practical and environmentally-friendly synthetic route to chiral vicinal diamines by solvent-free mechanochemical diaza-Cope rearrangement. We herein showed that a new protocol by co-milling with common laboratory solid additives, such as silica gel, can significantly enhance the efficiency of the reaction, compared to reactions in the absence of additives. One possible explanation is the Lewis acidic nature of additives that accelerates a key Schiff base formation step. Reaction monitoring experiments tracing all the reaction species, including reactants, intermediates, and product, suggested that the reaction profile is distinctly different from ball-milling reactions without additives. Collectively, this work demonstrated that additive effect is a powerful tool to manipulate a reaction pathway in mechanochemical diazo-Cope rearrangement pathway, and this is expected to find broad interest in organic synthesis using mechanical force as an energy input.
Collapse
|
13
|
Peňaška T, Modrocká V, Stankovianska K, Mečiarová M, Rakovský E, Šebesta R. Organocatalytic Diastereodivergent Enantioselective Formal oxa-Diels-Alder Reaction of Unsaturated Ketones with Enoates Under Liquid-Assisted Grinding Conditions. CHEMSUSCHEM 2022; 15:e202200028. [PMID: 35146952 DOI: 10.1002/cssc.202200028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Chiral heterocycles occur in many compounds of interest, but their efficient synthesis is challenging. This study concerns the enantioselective and diastereoselective synthesis of densely substituted chiral pyran derivatives. Diastereodivergence of the oxa-Diels-Alder reaction is achieved by using either a bifunctional amino-thiourea or a monofunctional quinine organocatalyst under ball-milling conditions. Liquid-assisted grinding proves a highly efficient means of affording pyrans in high yield, with high enantiomeric purities and short reaction times.
Collapse
Affiliation(s)
- Tibor Peňaška
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Viktória Modrocká
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Klára Stankovianska
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Mária Mečiarová
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Erik Rakovský
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Radovan Šebesta
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| |
Collapse
|
14
|
Arciszewski J, Auclair K. Mechanoenzymatic Reactions Involving Polymeric Substrates or Products. CHEMSUSCHEM 2022; 15:e202102084. [PMID: 35104019 DOI: 10.1002/cssc.202102084] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Mechanoenzymology is an emerging field in which mechanical mixing is used to sustain enzymatic reactions in low-solvent or solvent-free mixtures. Many enzymes have been reported that thrive under such conditions. Considering the central role of biopolymers and synthetic polymers in our society, this minireview highlights the use of mechanoenzymology for the synthesis or depolymerization of oligomeric or polymeric materials. In contrast to traditional in-solution reactions, solvent-free mechanoenzymology has the advantages of avoiding solubility issues, proceeding in a minimal volume, and reducing solvent waste while potentially improving the reaction efficiency and accessing new reactivity. It is expected that this strategy will continue to gain popularity and find more applications.
Collapse
Affiliation(s)
- Jane Arciszewski
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| | - Karine Auclair
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| |
Collapse
|
15
|
Nugent TC, Vos AE, Hussain I, El Damrany Hussein HA, Goswami F. A 2000 to 2020 Practitioner's Guide to Chiral Amine‐Based Enantioselective Aldol Reactions: Ketone Substrates, Best Methods, in Water Reaction Environments, and Defining Nuances. European J Org Chem 2022. [DOI: 10.1002/ejoc.202100529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Thomas C. Nugent
- Department of Life Sciences and Chemistry Jacobs University Bremen 28759 Bremen Germany
| | - Alice E. Vos
- Department of Life Sciences and Chemistry Jacobs University Bremen 28759 Bremen Germany
| | - Ishtiaq Hussain
- Department of Pharmacy Abbottabad University of Science and Technology Havelian Abbottabad 22010 Pakistan
| | | | - Falguni Goswami
- Department of Life Sciences and Chemistry Jacobs University Bremen 28759 Bremen Germany
| |
Collapse
|
16
|
Williams MTJ, Morrill LC, Browne DL. Mechanochemical Organocatalysis: Do High Enantioselectivities Contradict What We Might Expect? CHEMSUSCHEM 2022; 15:e202102157. [PMID: 34767693 PMCID: PMC9300213 DOI: 10.1002/cssc.202102157] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/09/2021] [Indexed: 05/10/2023]
Abstract
Ball mills input energy to samples by pulverising the contents of the jar. Each impact on the sample or wall of the jar results in an instantaneous transmission of energy in the form of a temperature and pressure increase (volume reduction). Conversely, enantioselective organocatalytic reactions proceed through perceived delicate and well-organised transition states. Does there exist a dichotomy in the idea of enantioselective mechanochemical organocatalysis? This Review provides a survey of the literature reporting the combination of organocatalytic reactions with mechanochemical ball milling conditions. Where possible, direct comparisons of stirred in solution, stirred neat and ball milled processes are drawn with a particular focus on control of stereoselectivity.
Collapse
Affiliation(s)
- Matthew T. J. Williams
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityPark PlaceCardiffCF10 3ATUK
| | - Louis C. Morrill
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityPark PlaceCardiffCF10 3ATUK
| | - Duncan L. Browne
- Department of Pharmaceutical and Biological ChemistrySchool of PharmacyUniversity College London29–39 Brunswick Square, BloomsburyLondonWC1N 1AXUK
| |
Collapse
|
17
|
Yang X, Wu C, Su W, Yu J. Mechanochemical C−X/C−H Functionalization: An Alternative Strategy Access to Pharmaceuticals. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101440] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xinjie Yang
- Zhejiang University of Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Chaowang Road 18# 310014 Hangzhou CHINA
| | - Chongyang Wu
- Zhejiang University of Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Chaowang Road 18# 310014 Hangzhou CHINA
| | - Weike Su
- Zhejiang University of Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Chaowang Road 18# 310014 Hangzhou CHINA
| | - Jingbo Yu
- Zhejiang University of Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Chaowang Road 18# 310014 Hangzhou CHINA
| |
Collapse
|
18
|
Kolcsár VJ, Szőllősi G. Mechanochemical, Water‐Assisted Asymmetric Transfer Hydrogenation of Ketones Using Ruthenium Catalyst. ChemCatChem 2021. [DOI: 10.1002/cctc.202101501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | - György Szőllősi
- Stereochemistry Research Group Eötvös Loránd Research Network University of Szeged 6720 Szeged, Eötvös utca 6 Hungary
| |
Collapse
|
19
|
Thiyagarajan R, Begum Z, Seki C, Okuyama Y, Kwon E, Uwai K, Tokiwa M, Tokiwa S, Takeshita M, Nakano H. New small γ-turn type N-primary amino terminal tripeptide organocatalyst for solvent-free asymmetric aldol reaction of various ketones with aldehydes. RSC Adv 2021; 11:38925-38932. [PMID: 35493209 PMCID: PMC9044195 DOI: 10.1039/d1ra08635a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 01/18/2023] Open
Abstract
New small γ-turn type N-primary amino terminal tripeptides were synthesized and their functionality as an organocatalyst was examined in the asymmetric aldol reaction of various ketones with different aromatic aldehydes under solvent-free neat conditions to afford the desired chiral anti-aldol products in good to excellent chemical yields, diastereoselectivities and enantioselectivities (up to 99%, up to syn : anti/13 : 87 dr, up to 99% ee).
Collapse
Affiliation(s)
- Rajkumar Thiyagarajan
- Division of Sustainable and Environmental Engineering, Graduate School of Engineering, Muroran Institute of Technology 27-1 Mizumoto-cho Muroran 050-8585 Japan
| | - Zubeda Begum
- Division of Sustainable and Environmental Engineering, Graduate School of Engineering, Muroran Institute of Technology 27-1 Mizumoto-cho Muroran 050-8585 Japan
| | - Chigusa Seki
- Division of Sustainable and Environmental Engineering, Graduate School of Engineering, Muroran Institute of Technology 27-1 Mizumoto-cho Muroran 050-8585 Japan
| | - Yuko Okuyama
- Tohoku Medical and Pharmaceutical University 4-4-1 Komatsushima Aoba-Ku Sendai 981-8558 Japan
| | - Eunsang Kwon
- Research and Analytical Center for Giant Molecules, Graduate School of Sciences,Tohoku Medical and Pharmaceutical University 4-4-1 Komatsushima Aoba-Ku Sendai 981-8558 Japan
| | - Koji Uwai
- Division of Sustainable and Environmental Engineering, Graduate School of Engineering, Muroran Institute of Technology 27-1 Mizumoto-cho Muroran 050-8585 Japan
| | - Michio Tokiwa
- Tokiwakai Group 62 Numajiri Tsuduri-Chou Uchigo Iwaki 973-8053 Japan
| | - Suguru Tokiwa
- Tokiwakai Group 62 Numajiri Tsuduri-Chou Uchigo Iwaki 973-8053 Japan
| | | | - Hiroto Nakano
- Division of Sustainable and Environmental Engineering, Graduate School of Engineering, Muroran Institute of Technology 27-1 Mizumoto-cho Muroran 050-8585 Japan
| |
Collapse
|
20
|
Piquero M, Font C, Gullón N, López-Alvarado P, Menéndez JC. One-Pot Mechanochemical Synthesis of Mono- and Bis-Indolylquinones via Solvent-Free Multiple Bond-Forming Processes. CHEMSUSCHEM 2021; 14:4764-4775. [PMID: 34409746 DOI: 10.1002/cssc.202101529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Bis-indolylquinones are fungal natural products endowed with interesting pharmacological properties. Most of the previously described methodologies in solution for the construction of the bis-indolylquinone framework show disadvantages associated with long reaction times and difficult, waste-generating purifications. A one-pot mechanochemical methodology for the synthesis of indolylquinones was developed, starting from indoles and dihaloquinones in the presence of FeCl3 or p-TsOH as catalysts and Fetizon's reagent as an oxidant. In contrast to solution chemistry, mechanochemical activation allowed the double addition of indole to a quinone substrate in one pot, leading to symmetrical or non-symmetrical bis-indolylquinones via a domino processes comprising up to six steps. In terms of sustainability, the method has several advantages over the solution protocol, including much shorter reaction times, no external heating, one-pot operation, and the absence of chromatography, leading to a drastically better performance in green metrics and demonstrating the application of several principles of green chemistry, in particular principles 2, 3, and 5.
Collapse
Affiliation(s)
- Marta Piquero
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Cristina Font
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Natalia Gullón
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Pilar López-Alvarado
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - J Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| |
Collapse
|
21
|
Mechanically activated zero-valent silicon by coating silica to decolorize Acid Red 73 dye. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
22
|
Pérez-Venegas M, Juaristi E. Mechanoenzymology: State of the Art and Challenges towards Highly Sustainable Biocatalysis. CHEMSUSCHEM 2021; 14:2682-2688. [PMID: 33882180 DOI: 10.1002/cssc.202100624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Global awareness of the importance of developing environmentally friendlier and more sustainable methods for the synthesis of valuable chemical compounds has led to the design of novel synthetic strategies, involving bio- and organocatalysis as well as the application of novel efficient and ground-breaking technologies such as present-day solvent-free mechanochemistry. In this regard, the evaluation of biocatalytic protocols mediated by the combination of mechanical activation and enzymatic catalysis has recently attracted the attention of the chemical community. Such mechanoenzymatic strategy represents an innovative and promising "green" approach in chemical synthesis that poses nevertheless new paradigms regarding the relative resilience of biomolecules to the mechanochemical stress and to the apparent high energy, at least in so-called hot-spots, during the milling process. Herein, relevant comments on the conceptualization of such mechanoenzymatic approach as a sustainable option in chemical synthesis, recent progress in the area, and associated challenges are discussed.
Collapse
Affiliation(s)
- Mario Pérez-Venegas
- Chemistry Department, McGill University, 801 Sherbrooke St. W., Montreal, QC, H3A 0B8, Canada
| | - Eusebio Juaristi
- Chemistry Department Centro de Investigación y de Estudios Avanzados, 07360, Ciudad de México, Mexico
- El Colegio Nacional, Luis González Obregón # 23, Centro Histórico, 06020, Ciudad de México, Mexico
| |
Collapse
|
23
|
Ardila-Fierro KJ, Hernández JG. Sustainability Assessment of Mechanochemistry by Using the Twelve Principles of Green Chemistry. CHEMSUSCHEM 2021; 14:2145-2162. [PMID: 33835716 DOI: 10.1002/cssc.202100478] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Indexed: 05/22/2023]
Abstract
In recent years, mechanochemistry has been growing into a widely accepted alternative for chemical synthesis. In addition to their efficiency and practicality, mechanochemical reactions are also recognized for their sustainability. The association between mechanochemistry and Green Chemistry often originates from the solvent-free nature of most mechanochemical protocols, which can reduce waste production. However, mechanochemistry satisfies more than one of the Principles of Green Chemistry. In this Review we will present a series of examples that will clearly illustrate how mechanochemistry can significantly contribute to the fulfillment of Green Chemistry in a more holistic manner.
Collapse
Affiliation(s)
- Karen J Ardila-Fierro
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia
| | - José G Hernández
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia
| |
Collapse
|
24
|
Juaristi E. Recent developments in next generation (S)-proline-derived chiral organocatalysts. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132143] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
25
|
O’Neill RT, Boulatov R. The many flavours of mechanochemistry and its plausible conceptual underpinnings. Nat Rev Chem 2021; 5:148-167. [PMID: 37117533 DOI: 10.1038/s41570-020-00249-y] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2020] [Indexed: 12/12/2022]
Abstract
Mechanochemistry describes diverse phenomena in which mechanical load affects chemical reactivity. The fuzziness of this definition means that it includes processes as seemingly disparate as motor protein function, organic synthesis in a ball mill, reactions at a propagating crack, chemical actuation, and polymer fragmentation in fast solvent flows and in mastication. In chemistry, the rate of a reaction in a flask does not depend on how fast the flask moves in space. In mechanochemistry, the rate at which a material is deformed affects which and how many bonds break. In other words, in some manifestations of mechanochemistry, macroscopic motion powers otherwise endergonic reactions. In others, spontaneous chemical reactions drive mechanical motion. Neither requires thermal or electrostatic gradients. Distinct manifestations of mechanochemistry are conventionally treated as being conceptually independent, which slows the field in its transformation from being a collection of observations to a rigorous discipline. In this Review, we highlight observations suggesting that the unifying feature of mechanochemical phenomena may be the coupling between inertial motion at the microscale to macroscale and changes in chemical bonding enabled by transient build-up and relaxation of strains, from macroscopic to molecular. This dynamic coupling across multiple length scales and timescales also greatly complicates the conceptual understanding of mechanochemistry.
Collapse
|
26
|
Shou H, He Z, Peng G, Su W, Yu J. Two approaches for the synthesis of levo-praziquantel. Org Biomol Chem 2021; 19:4507-4514. [PMID: 33908985 DOI: 10.1039/d1ob00453k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report herein the development of two pathways for the preparation of levo-praziquantel (R-PZQ), which involves three-/four-step processes of a mechanochemical (asymmetric) aza-Henry/acylation reaction, a hydrogenation reaction, (chiral resolution) and a solvent-free acylation-ring closing reaction. The key intermediate (R)-1-aminomethyl tetrahydroisoquinoline could be obtained either by chiral resolution with a rational reuse of the S-isomer or by mechanochemical enantioselective synthesis that refrained from using a bulky toxic solvent. The efficiency and scalability of both the developed routes were demonstrated and desired target product was obtained in a satisfactory yield with excellent enantiopurity (>99%), offering practical, concise and environmentally friendly alternatives to access R-PZQ.
Collapse
Affiliation(s)
- Haowen Shou
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Zhaoting He
- Beijing Fukangren Bio-pharm Tech Co., Ltd, 102627, P. R. China
| | - Gang Peng
- Huadong Medicine Co., Ltd, Hangzhou 310011, P. R. China
| | - Weike Su
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Jingbo Yu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
27
|
Pérez‐Venegas M, Arbeloa T, Bañuelos J, López‐Arbeloa I, Lozoya‐Pérez NE, Franco B, Mora‐Montes HM, Belmonte‐Vázquez JL, Bautista‐Hernández CI, Peña‐Cabrera E, Juaristi E. Mechanochemistry as a Sustainable Method for the Preparation of Fluorescent Ugi BODIPY Adducts. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mario Pérez‐Venegas
- Dpto. Química Centro de Investigación y de Estudios Avanzados Instituto Politécnico Nacional Av. IPN # 2508 San Pedro Zacatenco 07360, México, D. F. Mexico
| | - Teresa Arbeloa
- Dpto. Química Física Universidad del País Vasco (UPV/EHU) Aptdo. 644 48080 Bilbao Spain
| | - Jorge Bañuelos
- Dpto. Química Física Universidad del País Vasco (UPV/EHU) Aptdo. 644 48080 Bilbao Spain
| | - Iñigo López‐Arbeloa
- Dpto. Química Física Universidad del País Vasco (UPV/EHU) Aptdo. 644 48080 Bilbao Spain
| | - Nancy E. Lozoya‐Pérez
- Dpto. Biología Universidad de Guanajuato Noria Alta S/N Guanajuato Gto. 36050 Mexico
| | - Bernardo Franco
- Dpto. Biología Universidad de Guanajuato Noria Alta S/N Guanajuato Gto. 36050 Mexico
| | - Héctor M. Mora‐Montes
- Dpto. Biología Universidad de Guanajuato Noria Alta S/N Guanajuato Gto. 36050 Mexico
| | | | | | - Eduardo Peña‐Cabrera
- Departamento de Química Universidad de Guanajuato Noria Alta S/N. Guanajuato Gto. 36050 Mexico
| | - Eusebio Juaristi
- Dpto. Química Centro de Investigación y de Estudios Avanzados Instituto Politécnico Nacional Av. IPN # 2508 San Pedro Zacatenco 07360, México, D. F. Mexico
- El Colegio Nacional Luis González Obregón # 23, Centro Histórico 06020 Ciudad de México Mexico
| |
Collapse
|
28
|
Schöbel JH, Liang W, Wöll D, Bolm C. Mechanochemical Synthesis of 1,2,6-Thiadiazine 1-Oxides from Sulfonimidamides and the Fluorescence Properties of the Products. J Org Chem 2020; 85:15760-15766. [PMID: 33225705 DOI: 10.1021/acs.joc.0c02599] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A solvent-free mechanochemical synthesis for 1,2,6-thiadiazine 1-oxides starting from NH-sulfonimidamides and propargyl ketones has been developed. Lewis acids affect these one-pot aza-Michael-addition/cyclization/dehydration reaction sequences. The photophysical properties of the resulting heterocyclic sulfonimidamide derivatives were characterized.
Collapse
Affiliation(s)
- Jan-Hendrik Schöbel
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Wenjing Liang
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52074 Aachen, Germany
| | - Dominik Wöll
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52074 Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| |
Collapse
|
29
|
Doerr AM, Burroughs JM, Gitter SR, Yang X, Boydston AJ, Long BK. Advances in Polymerizations Modulated by External Stimuli. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03802] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alicia M. Doerr
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Justin M. Burroughs
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Sean R. Gitter
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Xuejin Yang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Andrew J. Boydston
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemical and Biological Engineering and Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Brian K. Long
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| |
Collapse
|
30
|
Avila-Ortiz CG, Juaristi E. Novel Methodologies for Chemical Activation in Organic Synthesis under Solvent-Free Reaction Conditions. Molecules 2020; 25:E3579. [PMID: 32781678 PMCID: PMC7464687 DOI: 10.3390/molecules25163579] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
One central challenge for XXI century chemists is the development of sustainable processes that do not represent a risk either to humanity or to the environment. In this regard, the search for more efficient and clean alternatives to achieve the chemical activation of molecules involved in chemical transformations has played a prominent role in recent years. The use of microwave or UV-Vis light irradiation, and mechanochemical activation is already widespread in many laboratories. Nevertheless, an additional condition to achieve "green" processes comes from the point of view of so-called atom economy. The removal of solvents from chemical reactions generally leads to cleaner, more efficient and more economical processes. This review presents several illustrative applications of the use of sustainable protocols in the synthesis of organic compounds under solvent-free reaction conditions.
Collapse
Affiliation(s)
- Claudia Gabriela Avila-Ortiz
- Departamento de Química, Centro de Investigación y de Estudios Avanzados, Av. IPN 2508, 07360 Ciudad de México, Mexico
| | - Eusebio Juaristi
- Departamento de Química, Centro de Investigación y de Estudios Avanzados, Av. IPN 2508, 07360 Ciudad de México, Mexico
- El Colegio Nacional, Donceles 104, Centro Histórico, 06020 Ciudad de México, Mexico
| |
Collapse
|
31
|
Pérez-Venegas M, Villanueva-Hernández MN, Peña-Cabrera E, Juaristi E. Mechanochemically Activated Liebeskind–Srogl (L-S) Cross-Coupling Reaction: Green Synthesis of meso-Substituted BODIPYs. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mario Pérez-Venegas
- Departamento de Química, Centro de Investigación y de Estudios Avanzados, Av. IPN 2508, 07360 Ciudad de México, Mexico
| | | | - Eduardo Peña-Cabrera
- Departamento de Química, Universidad de Guanajuato, Col. Noria Alta S/N, Guanajuato, Guanajuato 36050, Mexico
| | - Eusebio Juaristi
- Departamento de Química, Centro de Investigación y de Estudios Avanzados, Av. IPN 2508, 07360 Ciudad de México, Mexico
- El Colegio Nacional, Luis González Obregón 23, Centro Histórico, 06020 Ciudad de México, Mexico
| |
Collapse
|
32
|
Ardila‐Fierro KJ, Lukin S, Etter M, Užarević K, Halasz I, Bolm C, Hernández JG. Direct Visualization of a Mechanochemically Induced Molecular Rearrangement. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914921] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Stipe Lukin
- Division of Physical Chemistry Ruđer Bošković Institute Bijenička 54 10000 Zagreb Croatia
| | - Martin Etter
- Deutsches Elektronen-Synchrotron (DESY) Notkestr. 85 22607 Hamburg Germany
| | - Krunoslav Užarević
- Division of Physical Chemistry Ruđer Bošković Institute Bijenička 54 10000 Zagreb Croatia
| | - Ivan Halasz
- Division of Physical Chemistry Ruđer Bošković Institute Bijenička 54 10000 Zagreb Croatia
| | - Carsten Bolm
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - José G. Hernández
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
33
|
Ardila‐Fierro KJ, Lukin S, Etter M, Užarević K, Halasz I, Bolm C, Hernández JG. Direct Visualization of a Mechanochemically Induced Molecular Rearrangement. Angew Chem Int Ed Engl 2020; 59:13458-13462. [DOI: 10.1002/anie.201914921] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/18/2020] [Indexed: 01/31/2023]
Affiliation(s)
| | - Stipe Lukin
- Division of Physical Chemistry Ruđer Bošković Institute Bijenička 54 10000 Zagreb Croatia
| | - Martin Etter
- Deutsches Elektronen-Synchrotron (DESY) Notkestr. 85 22607 Hamburg Germany
| | - Krunoslav Užarević
- Division of Physical Chemistry Ruđer Bošković Institute Bijenička 54 10000 Zagreb Croatia
| | - Ivan Halasz
- Division of Physical Chemistry Ruđer Bošković Institute Bijenička 54 10000 Zagreb Croatia
| | - Carsten Bolm
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - José G. Hernández
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
34
|
Santi N, Morrill LC, Luk LYP. Streptavidin-Hosted Organocatalytic Aldol Addition. Molecules 2020; 25:E2457. [PMID: 32466220 PMCID: PMC7287710 DOI: 10.3390/molecules25102457] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/27/2022] Open
Abstract
In this report, the streptavidin-biotin technology was applied to enable organocatalytic aldol addition. By attaching pyrrolidine to the valeric motif of biotin and introducing it to streptavidin (Sav), a protein-based organocatalytic system was created, and the aldol addition of acetone with p-nitrobenzaldehyde was tested. The conversion of substrate to product can be as high as 93%. Although the observed enantioselectivity was only moderate (33:67 er), further protein engineering efforts can be included to improve the selectivity. These results have proven the concept that Sav can be used to host stereoselective aldol addition.
Collapse
Affiliation(s)
- Nicolò Santi
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, UK; (N.S.); (L.C.M.)
| | - Louis C. Morrill
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, UK; (N.S.); (L.C.M.)
- Cardiff Catalysis Institute, School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, UK
| | - Louis Y. P. Luk
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, UK; (N.S.); (L.C.M.)
- Cardiff Catalysis Institute, School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, UK
| |
Collapse
|
35
|
Pérez‐Venegas M, Rodríguez‐Treviño AM, Juaristi E. Dual Mechanoenzymatic Kinetic Resolution of (±)‐Ketorolac. ChemCatChem 2020. [DOI: 10.1002/cctc.201902292] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mario Pérez‐Venegas
- Department of ChemistryCentro de Investigación y de Estudios Avanzados Av. IPN 2508 Ciudad de México 07360 Mexico
| | | | - Eusebio Juaristi
- Department of ChemistryCentro de Investigación y de Estudios Avanzados Av. IPN 2508 Ciudad de México 07360 Mexico
- El Colegio Nacional Donceles 104 Ciudad de México 06020 Mexico
| |
Collapse
|
36
|
van Bonn P, Bolm C, Hernández JG. Mechanochemical Palladium-Catalyzed Carbonylative Reactions Using Mo(CO) 6. Chemistry 2020; 26:2576-2580. [PMID: 31802549 PMCID: PMC7065133 DOI: 10.1002/chem.201904528] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/08/2019] [Indexed: 12/30/2022]
Abstract
Esters and amides were mechanochemically prepared by palladium-catalyzed carbonylative reactions of aryl iodides by using molybdenum hexacarbonyl as a convenient solid carbonyl source and avoiding a direct handling of gaseous carbon monoxide. Real-time monitoring of the mechanochemical reaction by in situ pressure sensing revealed that CO is rapidly transferred from Mo(CO)6 to the active catalytic system without significant release of molecular carbon monoxide.
Collapse
Affiliation(s)
- Pit van Bonn
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Carsten Bolm
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - José G. Hernández
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| |
Collapse
|
37
|
Nicholson WI, Seastram AC, Iqbal SA, Reed‐Berendt BG, Morrill LC, Browne DL. N-Heterocyclic Carbene Acyl Anion Organocatalysis by Ball-Milling. CHEMSUSCHEM 2020; 13:131-135. [PMID: 31774627 PMCID: PMC6972762 DOI: 10.1002/cssc.201902346] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Indexed: 05/05/2023]
Abstract
The ability to conduct N-heterocyclic carbene-catalysed acyl anion chemistry under ball-milling conditions is reported for the first time. This process has been exemplified through applications to intermolecular-benzoin, intramolecular-benzoin, intermolecular-Stetter and intramolecular-Stetter reactions including asymmetric examples and demonstrates that this mode of mechanistically complex organocatalytic reaction can operate under solvent-minimised conditions.
Collapse
Affiliation(s)
- William I. Nicholson
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityPark PlaceCardiffCF10 3ATUnited Kingdom
| | - Alex C. Seastram
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityPark PlaceCardiffCF10 3ATUnited Kingdom
| | - Saqib A. Iqbal
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityPark PlaceCardiffCF10 3ATUnited Kingdom
| | - Benjamin G. Reed‐Berendt
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityPark PlaceCardiffCF10 3ATUnited Kingdom
| | - Louis C. Morrill
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityPark PlaceCardiffCF10 3ATUnited Kingdom
| | - Duncan L. Browne
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityPark PlaceCardiffCF10 3ATUnited Kingdom
| |
Collapse
|
38
|
Baláž M, Kudličková Z, Vilková M, Imrich J, Balážová Ľ, Daneu N. Mechanochemical Synthesis and Isomerization of N-Substituted Indole-3-carboxaldehyde Oximes †. Molecules 2019; 24:molecules24183347. [PMID: 31540034 PMCID: PMC6766794 DOI: 10.3390/molecules24183347] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/29/2019] [Accepted: 09/11/2019] [Indexed: 11/16/2022] Open
Abstract
Performing solution-phase oximation reactions with hydroxylamine hydrochloride (NH2OH·HCl) carries significant risk, especially in aqueous solutions. In the present study, four N-substituted indole-3-carboxaldehyde oximes were prepared from the corresponding aldehydes by solvent-free reaction with NH2OH·HCl and a base (NaOH or Na2CO3) using a mechanochemical approach, thus minimizing the possible risk. In all cases, the conversion to oximes was almost complete. The focus of this work is on 1-methoxyindole-3-carboxaldehyde oxime, a key intermediate in the production of indole phytoalexins with useful antimicrobial properties. Under optimized conditions, it was possible to reach almost 95% yield after 20 min of milling. Moreover, for the products containing electron-donating substituents (-CH3, -OCH3), the isomerization from the oxime anti to syn isomer under acidic conditions was discovered. For the 1-methoxy analog, the acidic isomerization of pure isomers in solution resulted in the formation of anti isomer, whereas the prevalence of syn isomer was observed in solid state. From NMR data the syn and anti structures of produced oximes were elucidated. This work shows an interesting and possibly scalable alternative to classical synthesis and underlines environmentally friendly and sustainable character of mechanochemistry.
Collapse
Affiliation(s)
- Matej Baláž
- Department of Mechanochemistry, Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia.
| | - Zuzana Kudličková
- Department of Chemistry, Biochemistry and Biophysics, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia.
| | - Mária Vilková
- NMR Laboratory, Faculty of Science, P. J. Šafárik University, Moyzesova 11, 04001 Košice, Slovakia.
| | - Ján Imrich
- NMR Laboratory, Faculty of Science, P. J. Šafárik University, Moyzesova 11, 04001 Košice, Slovakia.
| | - Ľudmila Balážová
- Department of Pharmacognosy and Botany, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia.
| | - Nina Daneu
- Advanced Materials Department, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| |
Collapse
|