1
|
Zhu Y, Yang C, Lin Q, Li J, Loh TP, Chen P, Jia Z. Rapid C-S Coupling in Water via Ion-Pair-Catalyzed Dehydration. Org Lett 2025; 27:2110-2115. [PMID: 39985787 DOI: 10.1021/acs.orglett.5c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
The C-S bond is of significant importance due to its unique properties and diverse roles in chemistry, biology, and materials science. In this work, we present an efficient synthetic protocol of a rapidly dehydrative C-S coupling reaction with alcohols and thiols in water catalyzed by a triaryl-carbenium ion pair. Under metal-free conditions, a wide range of thioethers were obtained in good yields (up to 99%) with excellent functional group tolerance, including the fast modification of amino acid derivatives and functional molecules. This method allowed reactions to be conducted with low catalyst loading, down to 1.0 mol %, and was practical for gram-scale synthesis. Furthermore, the reactions were performed under biocompatible conditions, making this approach highly suitable for potential bioconjugation.
Collapse
Affiliation(s)
- Yufei Zhu
- Henan Linker Technology Key Laboratory, College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou 450001, China
| | - Chao Yang
- Henan Linker Technology Key Laboratory, College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou 450001, China
| | - Qiaren Lin
- Henan Linker Technology Key Laboratory, College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou 450001, China
| | - Jinling Li
- Henan Linker Technology Key Laboratory, College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou 450001, China
| | - Teck-Peng Loh
- Henan Linker Technology Key Laboratory, College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou 450001, China
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371
| | - Peng Chen
- Henan Linker Technology Key Laboratory, College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou 450001, China
| | - Zhenhua Jia
- Henan Linker Technology Key Laboratory, College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
2
|
Liang RR, Liu Z, Han Z, Yang Y, Rushlow J, Zhou HC. Anchoring Catalytic Metal Nodes within a Single-Crystalline Pyrazolate Metal-Organic Framework for Efficient Heterogeneous Catalysis. Angew Chem Int Ed Engl 2025; 64:e202414271. [PMID: 39294099 DOI: 10.1002/anie.202414271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 09/20/2024]
Abstract
The synthesis of single-crystalline and robust pyrazolate metal-organic frameworks (Pz-MOFs) capable of facilitating challenging organic transformations is fundamentally significant in catalysis. Here we demonstrate a metal-node-based catalytic site anchoring strategy by synthesizing a single-crystalline and robust Pz-MOF (PCN-1004). PCN-1004 features one-dimensional (1D) copper-Pz chains interconnected by well-organized ligands, forming a porous three-dimensional (3D) network with two types of 1D open channels. Notably, PCN-1004 displays exceptional stability in aqueous solutions across a broad pH range (1 to 14), attributed to the robust copper-Pz coordination bond. Significantly, PCN-1004 functions as an outstanding catalyst in cross dehydrogenative coupling reactions for constructing C-O/C-S bonds, even in the absence of directing groups, achieving yields of up to ~99 %, with long cycle lives and high substrate compatibility. PCN-1004 outperforms all previously reported porphyrin-based homogeneous and heterogeneous catalysts. Control experiments and computations elucidate the pivotal catalytic role of the copper-Pz chains and reveal a free radical pathway for the reaction. This work not only demonstrates the successful implementation of a metal-node-based catalytic site anchoring strategy for the efficient catalysis of challenging organic transformations but also highlights the synergistic effect of a robust framework, 1D open channels, and active sites in enhancing catalytic efficiency within MOFs.
Collapse
Affiliation(s)
- Rong-Ran Liang
- Department of Chemistry, Texas A&M University, 77843, College Station, TX, United States
| | - Zhaoyi Liu
- Department of Chemistry, Texas A&M University, 77843, College Station, TX, United States
| | - Zongsu Han
- Department of Chemistry, Texas A&M University, 77843, College Station, TX, United States
| | - Yihao Yang
- Department of Chemistry, Texas A&M University, 77843, College Station, TX, United States
| | - Joshua Rushlow
- Department of Chemistry, Texas A&M University, 77843, College Station, TX, United States
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, 77843, College Station, TX, United States
| |
Collapse
|
3
|
Zachmann AKZ, Drappeau JA, Liu S, Alexanian EJ. C(sp 3)-H (N-Phenyltetrazole)thiolation as an Enabling Tool for Molecular Diversification. Angew Chem Int Ed Engl 2024; 63:e202404879. [PMID: 38657161 PMCID: PMC11795534 DOI: 10.1002/anie.202404879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
Methods enabling the broad diversification of C(sp3)-H bonds from a common intermediate are especially valuable in chemical synthesis. Herein, we report a site-selective (N-phenyltetrazole)thiolation of aliphatic and (hetero)benzylic C(sp3)-H bonds using a commercially available disulfide to access N-phenyltetrazole thioethers. The thioether products are readily elaborated in diverse fragment couplings for C-C, C-O, or C-N construction. The C-H functionalization proceeds via a radical-chain pathway involving hydrogen atom transfer by the electron-poor N-phenyltetrazolethiyl radical. Hexafluoroisopropanol was found to be essential to reactions involving aliphatic C(sp3)-H thiolation, with computational analysis consistent with dual hydrogen bonding of the N-phenyltetrazolethiyl radical imparting increased radical electrophilicity to facilitate the hydrogen atom transfer. Substrate is limiting reagent in all cases, and the reaction displays an exceptional functional group tolerance well suited to applications in late-stage diversification.
Collapse
Affiliation(s)
- Ashley K. Z. Zachmann
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (USA)
| | - Justine A. Drappeau
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (USA)
| | - Shubin Liu
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (USA); Research Computing Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (USA)
| | - Erik J. Alexanian
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (USA)
| |
Collapse
|
4
|
Sun K, Sun T, Jiang Y, Shi J, Sun W, Zheng Y, Wang Z, Li Z, Lv X, Zhang X, Luo F, Liu S. Iron-catalyzed benzylic C-H thiolation via photoinduced ligand-to-metal charge-transfer. Chem Commun (Camb) 2024; 60:5755-5758. [PMID: 38747147 DOI: 10.1039/d4cc01574f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Here, we describe an iron-catalyzed benzylic C-H thiolation of alkylarenes via photoinduced ligand-to-metal charge-transfer. The protocol features operational simplicity, mild reaction conditions, and the use of FeCl3 as catalyst and thiols/disulfides as sulfur sources, which enables the transformation of diverse benzylic C-H bonds into C-S bonds with a high efficiency.
Collapse
Affiliation(s)
- Kaiting Sun
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| | - Tianyi Sun
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| | - Yuxin Jiang
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| | - Jiayue Shi
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| | - Wenlu Sun
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| | - Youyou Zheng
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| | - Zhixuan Wang
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| | - Ziyu Li
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| | - Xiaoqing Lv
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| | - Xingxian Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Fan Luo
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| | - Shihui Liu
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| |
Collapse
|
5
|
Mou D, Wu Y, Wang L, Fu Y, Du Z. Synthesis of α-sulfenylated carbonyl compounds under metal-free conditions. Org Biomol Chem 2024; 22:274-278. [PMID: 38054500 DOI: 10.1039/d3ob01796f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
An efficient synthesis of α-sulfenylated carbonyl compounds from propargylic alcohols and aryl thiols under heating conditions is described. The method is characterized by mild conditions, simple operation, metal-free catalysis and good functional group tolerance. Mechanistic studies suggest that the reaction involves a radical pathway and an isomerization process.
Collapse
Affiliation(s)
- Dan Mou
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Yuanyuan Wu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Linda Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Ying Fu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Zhengyin Du
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| |
Collapse
|
6
|
Smith GC, Zhang DH, Zhang W, Soliven AH, Wuest WM. Visible-Light/Nickel-Catalyzed Carboxylation of C(sp 2) Bromides via Formate Activation. J Org Chem 2023. [PMID: 37319431 DOI: 10.1021/acs.joc.3c00895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A new visible-light-driven method for the carboxylation of (hetero)aryl/vinyl bromides has been developed using catalytic 4CzIPN, nickel, phenyl triflimide, and sodium formate as a carboxylation agent. Interestingly, we found catalytic phenyl triflimide plays an essential role in promoting the reaction. While many C(sp2) carboxylation reactions require harsh reagents or gaseous carbon dioxide, we demonstrate the mild and facile construction of carboxylic acids from readily available starting materials.
Collapse
Affiliation(s)
- Gavin C Smith
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Drason H Zhang
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Wanli Zhang
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Abigail H Soliven
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - William M Wuest
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
7
|
Beletskaya IP, Ananikov VP. Transition-Metal-Catalyzed C–S, C–Se, and C–Te Bond Formations via Cross-Coupling and Atom-Economic Addition Reactions. Achievements and Challenges. Chem Rev 2022; 122:16110-16293. [DOI: 10.1021/acs.chemrev.1c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Irina P. Beletskaya
- Chemistry Department, Lomonosov Moscow State University, Vorob’evy gory, Moscow 119899, Russia
| | - Valentine P. Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| |
Collapse
|
8
|
Abstract
Sulfur-containing compounds have attracted considerable interest due to their wide-ranging applications in pharmaceuticals, agriculture, natural products, and organic materials. The development of efficient and rapid methods for the construction and transformation of sulfur-containing compounds is of great importance. Since nickel is inexpensive and has a variety of valence states, strong nucleophilicity and low energy barriers for oxidative addition, the construction and transformation of sulfur-containing compounds by nickel-catalyzed cross-coupling have become important strategies. In addition, sulfur-containing compounds have also been playing increasingly important roles in the field of cross-coupling due to their thermodynamically stable but dynamic activity. This review will focus on nickel-catalyzed construction and transformation of various sulfide-containing compounds, such as sulfides, disulfides, and hypervalent sulfur-containing compounds.
Collapse
Affiliation(s)
- Su Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Ming Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
9
|
Wang Y, Qi Z, Niu Y, Feng H, Benassi E, Qian B. Selective oxidative intermolecular carbosulphenylation of aryl alkenes with thiols and nucleophiles via a 1,2-dithioethane intermediate. Chem Commun (Camb) 2021; 57:7533-7536. [PMID: 34236369 DOI: 10.1039/d1cc02517a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A periodate lithium-oxidized difunctionalisation of aryl alkenes with thiols and electron-rich aromatics was achieved, selectively affording more than thirty carbosulphenylated products. Both experiments and quantum chemical calculations demonstrated the radical-polar nature of the processes, and that 1,2-dithioethane and thiiranium ions might play the role of intermediates.
Collapse
Affiliation(s)
- Yuna Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China. and Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Zaojuan Qi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.
| | - Yanning Niu
- Department of Teaching and Research, Nanjing Forestry University, Huaian, 223003, P. R. China
| | - Hua Feng
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Enrico Benassi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China. and Novosibirsk State University, Novosibirsk 630090, Russian Federation
| | - Bo Qian
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.
| |
Collapse
|