1
|
Paço A, Freitas R. HOX genes as transcriptional and epigenetic regulators during tumorigenesis and their value as therapeutic targets. Epigenomics 2019; 11:1539-1552. [PMID: 31556724 DOI: 10.2217/epi-2019-0090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Several HOX genes are aberrantly expressed in a wide range of cancers interfering with their development and resistance to treatment. This seems to be often caused by alterations in the methylation profiles of their promoters. The role of HOX gene products in cancer is highly 'tissue specific', relying ultimately on their ability to regulate oncogenes or tumor-suppressor genes, directly as transcriptional regulators or indirectly interfering with the levels of epigenetic regulators. Nowadays, different strategies have been tested the use of HOX genes as therapeutic targets for cancer diagnosis and treatment. Here, we trace the history of the research concerning the involvement of HOX genes in cancer, their connection with epigenetic regulation and their potential use as therapeutic targets.
Collapse
Affiliation(s)
- Ana Paço
- Laboratório de Microbiologia do Solo, Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Instituto de Investigação e Formação Avançada (IIFA), Universidade de Évora, 7006-554 Évora, Portugal
| | - Renata Freitas
- I3S - Institute for Innovation & Health Research, University of Porto, 4200-135 Porto, Portugal.,IBMC - Institute for Molecular & Cell Biology, University of Porto, 4200-135 Porto, Portugal.,ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
2
|
Divergence, evolution and adaptation in ray-finned fish genomes. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1003-1018. [PMID: 31098893 DOI: 10.1007/s11427-018-9499-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/12/2019] [Indexed: 02/06/2023]
Abstract
With the rapid development of next-generation sequencing technologies and bioinformatics, over 50 ray-finned fish genomes by far have been sequenced with high quality. The genomic work provides abundant genetic resources for deep understanding of divergence, evolution and adaptation in the fish genomes. They are also instructive for identification of candidate genes for functional verification, molecular breeding, and development of novel marine drugs. As an example of other omics data, the Fish-T1K project generated a big database of fish transcriptomes to integrate with these published fish genomes for potential applications. In this review, we highlight the above-mentioned recent investigations and core topics on the ray-finned fish genome research, with a main goal to obtain a deeper understanding of fish biology for theoretical and practical applications.
Collapse
|
3
|
Kim HS, Hwang DS, Jeong CB, Au DWT, Lee JS. Identification and conservation of gene loss events of Hox gene clusters in the marine medaka (Oryzias melastigma). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 326:387-393. [PMID: 27966251 DOI: 10.1002/jez.b.22713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/11/2016] [Accepted: 10/17/2016] [Indexed: 11/07/2022]
Abstract
In this study, the identification of the whole Hox gene clusters (46 Hox genes) in the marine medaka Oryzias melastigma was investigated using genome assembly and RNA-seq information. Moreover, the gene loss events of Hox gene clusters, which may occur during fish evolution, were examined for a better understanding of the evolutionary status of the gene lost events of the Hox gene cluster across fish species, particularly in the genus Oryzias.
Collapse
Affiliation(s)
- Hui-Su Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, South Korea
| | - Dae-Sik Hwang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, South Korea
| | - Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, South Korea.,Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, South Korea
| | - Doris W T Au
- State Key Laboratory on Marine Pollution and Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
4
|
Glasauer SMK, Neuhauss SCF. Whole-genome duplication in teleost fishes and its evolutionary consequences. Mol Genet Genomics 2014; 289:1045-60. [PMID: 25092473 DOI: 10.1007/s00438-014-0889-2] [Citation(s) in RCA: 549] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 07/15/2014] [Indexed: 12/18/2022]
Abstract
Whole-genome duplication (WGD) events have shaped the history of many evolutionary lineages. One such duplication has been implicated in the evolution of teleost fishes, by far the most species-rich vertebrate clade. After initial controversy, there is now solid evidence that such event took place in the common ancestor of all extant teleosts. It is termed teleost-specific (TS) WGD. After WGD, duplicate genes have different fates. The most likely outcome is non-functionalization of one duplicate gene due to the lack of selective constraint on preserving both. Mechanisms that act on preservation of duplicates are subfunctionalization (partitioning of ancestral gene functions on the duplicates), neofunctionalization (assigning a novel function to one of the duplicates) and dosage selection (preserving genes to maintain dosage balance between interconnected components). Since the frequency of these mechanisms is influenced by the genes' properties, there are over-retained classes of genes, such as highly expressed ones and genes involved in neural function. The consequences of the TS-WGD, especially its impact on the massive radiation of teleosts, have been matter of controversial debate. It is evident that gene duplications are crucial for generating complexity and that WGDs provide large amounts of raw material for evolutionary adaptation and innovation. However, it is less clear whether the TS-WGD is directly linked to the evolutionary success of teleosts and their radiation. Recent studies let us conclude that TS-WGD has been important in generating teleost complexity, but that more recent ecological adaptations only marginally related to TS-WGD might have even contributed more to diversification. It is likely, however, that TS-WGD provided teleosts with diversification potential that can become effective much later, such as during phases of environmental change.
Collapse
Affiliation(s)
- Stella M K Glasauer
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | | |
Collapse
|
5
|
Yuan J, Tao W, Cheng Y, Huang B, Wang D. Genome-wide identification, phylogeny, and gonadal expression of fox genes in Nile tilapia, Oreochromis niloticus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1239-1252. [PMID: 24526262 DOI: 10.1007/s10695-014-9919-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 02/05/2014] [Indexed: 06/03/2023]
Abstract
The fox genes play important roles in various biological processes, including sexual development. In the present study, we isolated 65 fox genes, belonging to 18 subfamilies named A-R, from Nile tilapia through genome-wide screening. Twenty-four of them have two or three (foxm1) copies. Furthermore, 16, 25, 68, and 45 fox members were isolated from nematodes, protochordates, teleosts, and tetrapods, respectively. Phylogenetic analyses indicated fox gene family had undergone three expansions parallel to the three rounds of genome duplication during evolution. We also analyzed the clustered fox genes and found that apparent linkage duplication existed in teleosts, which further supported fish-specific genome duplication hypothesis. In addition, species- and lineage-specific duplication is another reason for fox gene family expansion. Based on the four pairs of XX and XY gonadal transcriptome data from four critical developmental stages, we analyzed the expression profile of all fox genes and identified sexually dimorphic fox genes at each stage. All fox genes were detected in gonads, with 15 of them at the background expression level (total read per kb per million reads, RPKM < 10), 29 at moderate expression level (10 < total RPKM < 100), and 21 at high expression level (total RPKM > 100). There are 27, 24, 28, and 9 sexually dimorphic fox genes at 5, 30, 90, and 180 days after hatching (dah), respectively. foxq1a, foxf1, foxr1, and foxr1 were identified as the most differentially expressed genes at each stage. foxl2 was characterized as XX-dominant gene, while foxd5, foxi3, foxn3, foxj1a, foxj3b, and foxo6b were characterized as XY-dominant genes. qPCR and in situ hybridization of foxh1 and foxj1a were performed to confirm the expression profiles and to validate the transcriptome data. Our results suggest that fox genes might play important roles in sex determination and gonadal development in teleosts.
Collapse
Affiliation(s)
- Jing Yuan
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, 400715, People's Republic of China
| | | | | | | | | |
Collapse
|
6
|
D'Souza DG, Rana K, Milley KM, MacLean HE, Zajac JD, Bell J, Brenner S, Venkatesh B, Richardson SJ, Danks JA. Expression of Wnt signaling skeletal development genes in the cartilaginous fish, elephant shark (Callorhinchus milii). Gen Comp Endocrinol 2013; 193:1-9. [PMID: 23871650 DOI: 10.1016/j.ygcen.2013.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 06/25/2013] [Accepted: 06/27/2013] [Indexed: 10/26/2022]
Abstract
Jawed vertebrates (Gnasthostomes) are broadly separated into cartilaginous fishes (Chondricthyes) and bony vertebrates (Osteichthyes). Cartilaginous fishes are divided into chimaeras (e.g. ratfish, rabbit fish and elephant shark) and elasmobranchs (e.g. sharks, rays and skates). Both cartilaginous fish and bony vertebrates are believed to have a common armoured bony ancestor (Class Placodermi), however cartilaginous fish are believed to have lost bone. This study has identified and investigated genes involved in skeletal development in vertebrates, in the cartilaginous fish, elephant shark (Callorhinchus milii). Ctnnb1 (β-catenin), Sfrp (secreted frizzled protein) and a single Sost or Sostdc1 gene (sclerostin or sclerostin domain-containing protein 1) were identified in the elephant shark genome and found to be expressed in a number of tissues, including cartilage. β-catenin was also localized in several elephant shark tissues. The expression of these genes, which belong to the Wnt/β-catenin pathway, is required for normal bone formation in mammals. These findings in the cartilaginous skeleton of elephant shark support the hypothesis that the common ancestor of cartilaginous fishes and bony vertebrates had the potential for making bone.
Collapse
Affiliation(s)
- Damian G D'Souza
- School of Medical Sciences, RMIT University, Bundoora 3083, Australia; Health Innovations Research Institute, RMIT University, Bundoora 3083, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Chen W, Song LJ, Zeng YQ, Yang Y, Wang H. Analysis on Differential Expressed Genes of Ovarian Tissue Between High- and Low-Yield Laying Hen. Anim Biotechnol 2013; 24:278-87. [DOI: 10.1080/10495398.2013.805695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Zhang Y, Liu S, Lu J, Jiang Y, Gao X, Ninwichian P, Li C, Waldbieser G, Liu Z. Comparative genomic analysis of catfish linkage group 8 reveals two homologous chromosomes in zebrafish and other teleosts with extensive inter-chromosomal rearrangements. BMC Genomics 2013; 14:387. [PMID: 23758806 PMCID: PMC3691659 DOI: 10.1186/1471-2164-14-387] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 05/24/2013] [Indexed: 12/02/2022] Open
Abstract
Background Comparative genomics is a powerful tool to transfer genomic information from model species to related non-model species. Channel catfish (Ictalurus punctatus) is the primary aquaculture species in the United States. Its existing genome resources such as genomic sequences generated from next generation sequencing, BAC end sequences (BES), physical maps, linkage maps, and integrated linkage and physical maps using BES-associated markers provide a platform for comparative genomic analysis between catfish and other model teleost fish species. This study aimed to gain understanding of genome organizations and similarities among catfish and several sequenced teleost genomes using linkage group 8 (LG8) as a pilot study. Results With existing genome resources, 287 unique genes were identified in LG8. Comparative genome analysis indicated that most of these 287 genes on catfish LG8 are located on two homologous chromosomes of zebrafish, medaka, stickleback, and three chromosomes of green-spotted pufferfish. Large numbers of conserved syntenies were identified. Detailed analysis of the conserved syntenies in relation to chromosome level similarities revealed extensive inter-chromosomal and intra-chromosomal rearrangements during evolution. Of the 287 genes, 35 genes were found to be duplicated in the catfish genome, with the vast majority of the duplications being interchromosomal. Conclusions Comparative genome analysis is a powerful tool even in the absence of a well-assembled whole genome sequence. In spite of sequence stacking due to low resolution of the linkage and physical maps, conserved syntenies can be identified although the exact gene order and orientation are unknown at present. Through chromosome-level comparative analysis, homologous chromosomes among teleosts can be identified. Syntenic analysis should facilitate annotation of the catfish genome, which in turn, should facilitate functional inference of genes based on their orthology.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, The Fish Molecular Genetics and Biotechnology Laboratory, Auburn University, Auburn, AL 36849, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Davis MC. The Deep Homology of the Autopod: Insights from Hox Gene Regulation. Integr Comp Biol 2013; 53:224-32. [DOI: 10.1093/icb/ict029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Yang L, Zou M, Fu B, He S. Genome-wide identification, characterization, and expression analysis of lineage-specific genes within zebrafish. BMC Genomics 2013; 14:65. [PMID: 23368736 PMCID: PMC3599513 DOI: 10.1186/1471-2164-14-65] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 01/29/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The genomic basis of teleost phenotypic complexity remains obscure, despite increasing availability of genome and transcriptome sequence data. Fish-specific genome duplication cannot provide sufficient explanation for the morphological complexity of teleosts, considering the relatively large number of extinct basal ray-finned fishes. RESULTS In this study, we performed comparative genomic analysis to discover the Conserved Teleost-Specific Genes (CTSGs) and orphan genes within zebrafish and found that these two sets of lineage-specific genes may have played important roles during zebrafish embryogenesis. Lineage-specific genes within zebrafish share many of the characteristics of their counterparts in other species: shorter length, fewer exon numbers, higher GC content, and fewer of them have transcript support. Chromosomal location analysis indicated that neither the CTSGs nor the orphan genes were distributed evenly in the chromosomes of zebrafish. The significant enrichment of immunity proteins in CTSGs annotated by gene ontology (GO) or predicted ab initio may imply that defense against pathogens may be an important reason for the diversification of teleosts. The evolutionary origin of the lineage-specific genes was determined and a very high percentage of lineage-specific genes were generated via gene duplications. The temporal and spatial expression profile of lineage-specific genes obtained by expressed sequence tags (EST) and RNA-seq data revealed two novel properties: in addition to being highly tissue-preferred expression, lineage-specific genes are also highly temporally restricted, namely they are expressed in narrower time windows than evolutionarily conserved genes and are specifically enriched in later-stage embryos and early larval stages. CONCLUSIONS Our study provides the first systematic identification of two different sets of lineage-specific genes within zebrafish and provides valuable information leading towards a better understanding of the molecular mechanisms of the genomic basis of teleost phenotypic complexity for future studies.
Collapse
Affiliation(s)
- Liandong Yang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, People's Republic of China
| | | | | | | |
Collapse
|
11
|
Crow KD, Smith CD, Cheng JF, Wagner GP, Amemiya CT. An independent genome duplication inferred from Hox paralogs in the American paddlefish--a representative basal ray-finned fish and important comparative reference. Genome Biol Evol 2012; 4:937-53. [PMID: 22851613 PMCID: PMC3509897 DOI: 10.1093/gbe/evs067] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Vertebrates have experienced two rounds of whole-genome duplication (WGD) in the stem lineages of deep nodes within the group and a subsequent duplication event in the stem lineage of the teleosts—a highly diverse group of ray-finned fishes. Here, we present the first full Hox gene sequences for any member of the Acipenseriformes, the American paddlefish, and confirm that an independent WGD occurred in the paddlefish lineage, approximately 42 Ma based on sequences spanning the entire HoxA cluster and eight genes on the HoxD gene cluster. These clusters comprise different HOX loci and maintain conserved synteny relative to bichir, zebrafish, stickleback, and pufferfish, as well as human, mouse, and chick. We also provide a gene genealogy for the duplicated fzd8 gene in paddlefish and present evidence for the first Hox14 gene in any ray-finned fish. Taken together, these data demonstrate that the American paddlefish has an independently duplicated genome. Substitution patterns of the “alpha” paralogs on both the HoxA and HoxD gene clusters suggest transcriptional inactivation consistent with functional diploidization. Further, there are similarities in the pattern of sequence divergence among duplicated Hox genes in paddlefish and teleost lineages, even though they occurred independently approximately 200 Myr apart. We highlight implications on comparative analyses in the study of the “fin-limb transition” as well as gene and genome duplication in bony fishes, which includes all ray-finned fishes as well as the lobe-finned fishes and tetrapod vertebrates.
Collapse
Affiliation(s)
- Karen D Crow
- Department of Biology, San Francisco State University, CA, USA.
| | | | | | | | | |
Collapse
|
12
|
Mansfield JH, McGlinn E. Evolution, Expression, and Developmental Function of Hox-Embedded miRNAs. Curr Top Dev Biol 2012; 99:31-57. [DOI: 10.1016/b978-0-12-387038-4.00002-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Galle J, Hoffmann M, Krinner A. Mesenchymal Stem Cell Heterogeneity and Ageing In Vitro: A Model Approach. COMPUTATIONAL MODELING IN TISSUE ENGINEERING 2012. [DOI: 10.1007/8415_2012_116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Raincrow JD, Dewar K, Stocsits C, Prohaska SJ, Amemiya CT, Stadler PF, Chiu CH. Hox clusters of the bichir (Actinopterygii, Polypterus senegalus) highlight unique patterns of sequence evolution in gnathostome phylogeny. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:451-64. [PMID: 21688387 DOI: 10.1002/jez.b.21420] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/27/2011] [Accepted: 04/24/2011] [Indexed: 12/12/2022]
Abstract
Teleost fishes have extra Hox gene clusters owing to shared or lineage-specific genome duplication events in rayfinned fish (actinopterygian) phylogeny. Hence, extrapolating between genome function of teleosts and human or even between different fish species is difficult. We have sequenced and analyzed Hox gene clusters of the Senegal bichir (Polypterus senegalus), an extant representative of the most basal actinopterygian lineage. Bichir possesses four Hox gene clusters (A, B, C, D); phylogenetic analysis supports their orthology to the four Hox gene clusters of the gnathostome ancestor. We have generated a comprehensive database of conserved Hox noncoding sequences that include cartilaginous, lobe-finned, and ray-finned fishes (bichir and teleosts). Our analysis identified putative and known Hox cis-regulatory sequences with differing depths of conservation in Gnathostoma. We found that although bichir possesses four Hox gene clusters, its pattern of conservation of noncoding sequences is mosaic between outgroups, such as human, coelacanth, and shark, with four Hox gene clusters and teleosts, such as zebrafish and pufferfish, with seven or eight Hox gene clusters. Notably, bichir Hox gene clusters have been invaded by DNA transposons and this trend is further exemplified in teleosts, suggesting an as yet unrecognized mechanism of genome evolution that may explain Hox cluster plasticity in actinopterygians. Taken together, our results suggest that actinopterygian Hox gene clusters experienced a reduction in selective constraints that surprisingly predates the teleost-specific genome duplication.
Collapse
Affiliation(s)
- Jeremy D Raincrow
- Department of Genetics, Rutgers University, Piscataway, New Jersey, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Zebrafish offers significant opportunities for the investigation of vertebrate development, evolution, physiology, and behavior and provides numerous models of human disease. Connecting zebrafish phenogenetic biology to that of humans and other vertebrates, however, requires the proper assignment of gene orthologies. Orthology assignments by phylogenetic analysis or by reciprocal best sequence similarity searches can lead to errors, especially in cases of gene duplication followed by gene loss or rapid lineage-specific gene evolution. Conserved synteny analysis provides a method that helps overcome such problems. Here we describe conserved synteny analysis for zebrafish genes and discuss the Synteny Database, a website specifically designed to identify conserved syntenies for zebrafish that takes into account the teleost genome duplication (TGD). We utilize the Synteny Database to demonstrate its power to resolve our understanding of the evolution of nerve growth factor receptor related genes, including Ngfr and the enigmatic Nradd. Finally, we compare conserved syntenies between zebrafish, stickleback, spotted gar, and human to understand the timing of chromosome rearrangements in teleost genome evolution. An improved understanding of gene histories that comes from the application of tools provided by the Synteny Database can facilitate the connectivity of zebrafish and human genomes.
Collapse
Affiliation(s)
- Julian M Catchen
- University of Oregon, Center for Ecology and Evolutionary Biology, Eugene Oregon, USA
| | | | | |
Collapse
|
16
|
Abstract
The homeodomain is a protein domain of about 60 amino acids that is encoded by homeobox genes. The homeodomain is a DNA binding domain, and hence homeodomain proteins are essentially transcription factors (TFs). They have been shown to play major roles in many developmental processes of animals, as well as fungi and plants. A primary function of homeodomain proteins is to regulate the expression of other genes in development and differentiation. Thousands of homeobox genes have been identified, and they can be grouped into many different classes. Often other conserved protein domains are found linked to a homeodomain. Several particular types of homeobox genes are organized into chromosomal clusters. The best-known cluster, the HOX cluster, is found in all bilaterian animals. Tetrapods contain four HOX clusters that arose through duplication in early vertebrate evolution. The genes in these clusters are called Hox genes. Lower chordates, insects and nematodes tend to have only one HOX cluster. Of particular interest is that many of the HOX cluster genes function in the process of pattern formation along the anterior-posterior body axis. Many other types of homeodomain proteins play roles in the determination of cell fates and cell differentiation. Homeobox genes thus perform key roles for all aspects of the development of an organism.
Collapse
Affiliation(s)
- Thomas R Bürglin
- Department of Biosciences and Nutrition, and Center for Biosciences, Karolinska Institutet, Hälsovägen 7, Novum, SE 141 83, Huddinge, Sweden,
| |
Collapse
|
17
|
Yuan J, He Z, Yuan X, Jiang X, Sun X, Zou S. Speciation of polyploid Cyprinidae fish of common carp, crucian carp, and silver crucian carp derived from duplicated Hox genes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:445-56. [PMID: 20700889 DOI: 10.1002/jez.b.21350] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recent studies on comparative genomics have suggested that a round of fish-specific whole genome duplication (3R) in ray-finned fishes might have occurred around 226-316 Mya. Additional genome duplication, specifically in cyprinids, may have occurred more recently after the divergence of the teleosts. The timing of this event, however, is unknown. To address this question, we sequenced four Hox genes from taxa representing the polyploid Cyprinidae fish, common carp (Cyprinus carpio, 2n=100), crucian carp (Carassius auratus auratus, 2n=100), and silver crucian carp (C. auratus gibelio, 2n=156), and then compared them with known sequences from the diploid Cyprinidae fish, blunt snout bream (Megalobrama amblycephala, 2n=48). Our results showed the presence of two distinct Hox duplicates in the genomes of common and crucian carp. Three distinct Hox sequences, one of them orthologous to a Hox gene in common carp and the other two orthologous to a Hox gene in crucian carp, were isolated in silver crucian carp, indicating a possible hybrid origin of silver crucian carp from crucian and common carp. The gene duplication resulting in the origin of the common ancestor of common and crucian carp likely occurred around 10.9-13.2 Mya. The speciations of common vs. crucian carp and silver crucian vs. crucian carp likely occurred around 8.1-11.4 and 2.3-3.0 Mya, respectively. Finally, nonfunctionalization resulting from point mutations in the coding region is a probable fate for some Hox duplicates. Taken together, these results suggested an evolutionary model for polyploidization in speciation and diversification of polyploid fish.
Collapse
Affiliation(s)
- Jian Yuan
- Key Laboratory of Aquatic Genetic Resources Certificated by the Ministry of Agriculture, Shanghai Ocean University, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
18
|
Guo B, Gan X, He S. Hox genes of the Japanese eel Anguilla japonica and Hox cluster evolution in teleosts. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:135-47. [PMID: 19670462 DOI: 10.1002/jez.b.21318] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Compared with other diploid teleosts (2n=48), anguilloid fish have a specialized karyotype (2n=38) and remarkable morphological variation, and represent one basal group species of teleosts. To investigate the Hox gene/cluster inventory in basal teleosts, a PCR-based survey of Hox genes in the Japanese eel (Anguilla japonica) was conducted with both gene-specific and homeobox-targeted degenerate primers. Our data provide evidence that at least 34 distinct Hox genes exist in the Japanese eel genome and that they represent eight Hox clusters. Duplication of Hox genes in the Japanese eel appears to be the result of the fish-specific genome duplication (FSGD) event. The Japanese eel shared the FSGD event with other teleosts such as zebrafish and pufferfish. A member of Hox paralog group one (HoxA1b) was preserved in the Japanese eel but was lost in other teleosts. Available Hox data revealed that the Hox cluster evolved distinctly in different teleost lineages. All duplicated Hox clusters were retained after the FSGD event in basal teleosts like in the Japanese eel, whereas crown teleosts lost one cluster (HoxCb or HoxDb). Based on current teleostean phylogeny, the HoxDb cluster was lost independently in the teleost lineages Otocephala and Euteleostei.
Collapse
Affiliation(s)
- Baocheng Guo
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, P.R. China
| | | | | |
Collapse
|
19
|
LeMoine CMR, Lougheed SC, Moyes CD. Modular Evolution of PGC-1α in Vertebrates. J Mol Evol 2010; 70:492-505. [DOI: 10.1007/s00239-010-9347-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 04/13/2010] [Indexed: 10/19/2022]
|
20
|
Yuan J, He Z, Yuan X, Jiang X, Sun X, Zou S. Retracted: Evidence for duplicated Hox genes in polyploid Cyprinidae fish of common carp, crucian carp and silver crucian carp. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:i-xii. [PMID: 19790198 DOI: 10.1002/jez.b.21323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Notice of Withdrawal: The following article from the Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, "Evidence for duplicated Hox genes in polyploid Cyprinidae fish of common carp, crucian carp, and silver crucian carp" by Yuan J, He Z, Yuan X, Jiang X, Sun X, Zou S, published online on 29 Sept 2009 in Wiley InterScience (www.interscience.wiley.com), has been withdrawn from publication by agreement between the authors, the journal Editor-in-Chief, Gunter P. Wagner, and Wiley Periodicals, Inc.
Collapse
|
21
|
Chambers KE, McDaniell R, Raincrow JD, Deshmukh M, Stadler PF, Chiu CH. Hox cluster duplication in the basal teleost Hiodon alosoides (Osteoglossomorpha). Theory Biosci 2009; 128:109-20. [PMID: 19225820 PMCID: PMC2683926 DOI: 10.1007/s12064-009-0056-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 01/12/2009] [Indexed: 11/30/2022]
Abstract
Large-scale—even genome-wide—duplications have repeatedly been invoked as an explanation for major radiations. Teleosts, the most species-rich vertebrate clade, underwent a “fish-specific genome duplication” (FSGD) that is shared by most ray-finned fish lineages. We investigate here the Hox complement of the goldeye (Hiodon alosoides), a representative of Osteoglossomorpha, the most basal teleostean clade. An extensive PCR survey reveals that goldeye has at least eight Hox clusters, indicating a duplicated genome compared to basal actinopterygians. The possession of duplicated Hox clusters is uncoupled to species richness. The Hox system of the goldeye is substantially different from that of other teleost lineages, having retained several duplicates of Hox genes for which crown teleosts have lost at least one copy. A detailed analysis of the PCR fragments as well as full length sequences of two HoxA13 paralogs, and HoxA10 and HoxC4 genes places the duplication event close in time to the divergence of Osteoglossomorpha and crown teleosts. The data are consistent with—but do not conclusively prove—that Osteoglossomorpha shares the FSGD.
Collapse
Affiliation(s)
- Karen E Chambers
- Department of Genetics, Rutgers University, Piscataway, NJ, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Lehmann J, Stadler PF, Prohaska SJ. SynBlast: assisting the analysis of conserved synteny information. BMC Bioinformatics 2008; 9:351. [PMID: 18721485 PMCID: PMC2543028 DOI: 10.1186/1471-2105-9-351] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 08/24/2008] [Indexed: 01/06/2023] Open
Abstract
Motivation In the last years more than 20 vertebrate genomes have been sequenced, and the rate at which genomic DNA information becomes available is rapidly accelerating. Gene duplication and gene loss events inherently limit the accuracy of orthology detection based on sequence similarity alone. Fully automated methods for orthology annotation do exist but often fail to identify individual members in cases of large gene families, or to distinguish missing data from traceable gene losses. This situation can be improved in many cases by including conserved synteny information. Results Here we present the SynBlast pipeline that is designed to construct and evaluate local synteny information. SynBlast uses the genomic region around a focal reference gene to retrieve candidates for homologous regions from a collection of target genomes and ranks them in accord with the available evidence for homology. The pipeline is intended as a tool to aid high quality manual annotation in particular in those cases where automatic procedures fail. We demonstrate how SynBlast is applied to retrieving orthologous and paralogous clusters using the vertebrate Hox and ParaHox clusters as examples. Software The SynBlast package written in Perl is available under the GNU General Public License at .
Collapse
Affiliation(s)
- Jörg Lehmann
- Bioinformatics Group, Department of Computer Science, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany.
| | | | | |
Collapse
|
23
|
Zou SM, Jiang XY. Retracted: Gene duplication and functional evolution of Hox genes in fishes. JOURNAL OF FISH BIOLOGY 2008; 73:329-354. [PMID: 20646134 DOI: 10.1111/j.1095-8649.2008.01852.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
With their power to shape animal morphology, few genes have captured the imagination of biologists as much as the evolutionarily conserved members of the Hox clusters. Hox genes encode transcription factors that play a key role in specifying the body plan in metazoans and are therefore essential in explaining patterns of evolutionary diversity. While each Hox cluster contains the same genes among the different mammalian species, this does not happen in ray-finned fish, in which both the number and organization of Hox genes and even Hox clusters are variable. Teleost fishes provide the first unambiguous support for ancient whole-genome duplication (third round) in an animal lineage. The number of genes differs in each cluster as a result of increased freedom to mutate after duplication. This has also allowed them to diverge and to adopt novel developmental roles. In this review, the authors have firstly focused on broadly outlining the duplication of Hoxgenes in fishes and discussing how comparative genomics is elucidating the molecular changes associated with the evolution of Hox genes expression and developmental function in the teleost fishes.Additional related research aspects, such as imaging of roles of microRNAs, chromatin regulation and evolutionary findings are also discussed.
Collapse
Affiliation(s)
- S M Zou
- Key Laboratory of Aquatic Genetic Resources and Aquacultural Ecosystem Certificated by the Ministry of Agriculture, Shanghai Fisheries University, Jungong Road 334, Shanghai 200090, China
| | | |
Collapse
|
24
|
Abstract
Vertebrate evolution is characterized by gene and genome duplication events. There is strong evidence that a whole-genome duplication occurred in the lineage leading to the teleost fishes. We have focused on the teleost hoxb1 duplicate genes as a paradigm to investigate the consequences of gene duplication. Previous analysis of the duplicated zebrafish hoxb1 genes suggested they have subfunctionalized. The combined expression pattern of the two zebrafish hoxb1 genes recapitulates the expression pattern of the single Hoxb1 gene of tetrapods, possibly due to degenerative changes in complementary cis-regulatory elements of the duplicates. Here we have tested the hypothesis that all teleost duplicates had a similar fate post duplication, by examining hoxb1 genes in medaka and striped bass. Consistent with this theory, we found that the ancestral Hoxb1 expression pattern is subdivided between duplicate genes in a largely similar fashion in zebrafish, medaka, and striped bass. Further, our analysis of hoxb1 genes reveals that sequence changes in cis-regulatory regions may underlie subfunctionalization in all teleosts, although the specific changes vary between species. It was previously shown that zebrafish hoxb1 duplicates have also evolved different functional capacities. We used misexpression to compare the functions of hoxb1 duplicates from zebrafish, medaka and striped bass. Unexpectedly, we found that some biochemical properties, which were paralog specific in zebrafish, are conserved in both duplicates of other species. This work suggests that the fate of duplicate genes varies across the teleost group.
Collapse
Affiliation(s)
- Imogen A Hurley
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, IL 60637, USA
| | | | | |
Collapse
|
25
|
Thomas-Chollier M, Ledent V. Comparative phylogenomic analyses of teleost fish Hox gene clusters: lessons from the cichlid fish Astatotilapia burtoni: comment. BMC Genomics 2008; 9:35. [PMID: 18218066 PMCID: PMC2246111 DOI: 10.1186/1471-2164-9-35] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 01/24/2008] [Indexed: 11/10/2022] Open
Abstract
A reanalysis of the sequences reported by Hoegg et al has highlighted the presence of a putative HoxC1a gene in Astatotilapia burtoni. We discuss the evolutionary history of the HoxC1a gene in the teleost fish lineages and suggest that HoxC1a gene was lost twice independently in the Neoteleosts. This comment points out that combining several gene-finding methods and a Hox-dedicated program can improve the identification of Hox genes.
Collapse
Affiliation(s)
- Morgane Thomas-Chollier
- Belgian EMBnet Node, Université Libre de Bruxelles - CP 257, Bd du Triomphe, B-1050 Brussels, Belgium.
| | | |
Collapse
|
26
|
Luo J, Stadler PF, He S, Meyer A. PCR survey of hox genes in the goldfish Carassius auratus auratus. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 308:250-8. [PMID: 17171698 DOI: 10.1002/jez.b.21144] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A tetraploidization event took place in the cyprinid lineage leading to goldfishes about 15 million years ago. A PCR survey for Hox genes in the goldfish Carassius auratus auratus (Actinopterygii: Cyprinidae) was performed to assess the consequences of this genome duplication. Not surprisingly, the genomic organization of the Hox gene clusters of goldfish is similar to that of the closely related zebrafish (Danio rerio). However, the goldfish exhibits a much larger number of recent pseudogenes, which are characterized by indels. These findings are consistent with the hypothesis that dosage effects cause selection pressure to rapidly silence crucial developmental regulators after a tetraploidization event.
Collapse
Affiliation(s)
- Jing Luo
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | | | | | | |
Collapse
|
27
|
Theodosiou NA, Hall DA, Jowdry AL. Comparison of acid mucin goblet cell distribution and Hox13 expression patterns in the developing vertebrate digestive tract. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2007; 308:442-53. [PMID: 17538949 DOI: 10.1002/jez.b.21170] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The digestive tract of vertebrates is a complex organ system required for the digestion of food and the absorption of nutrients. The colon evolved as a water absorption organ essential for vertebrates to survive on land. In contrast to land vertebrates, the Chondrichthyes (sharks, skates and rays) are nearly iso-osmotic with their ocean environment and do not reabsorb water from food waste. To understand the origin of the vertebrate colon, we examined the distribution of sulfated and sialyated mucus-producing cells in the little skate, Raja erinacea, as an indication of water absorption function in the chondrichthian digestive tract. The percentage of acid mucin producing goblet cells was analyzed in the spiral valve and hindgut of little skate and the small intestine and colon of mouse embryos. Levels of acid mucins in the hindgut of the little skate was comparable to that of the small intestines of terrestrial vertebrates, whereas the distal region of the spiral valve contained high levels of acid mucin producing cells similar to the colon of mouse and chick. The low numbers of acid mucins in the little skate hindgut confirms that a functional colon for water absorption is absent in the Chondrichthyes. Interestingly, the presence of high levels of acid mucins in the posterior spiral valve provides evidence for a possible primordial water-absorbing organ in the elasmobranchs. Hoxd13 patterns acid mucins in the colons of terrestrial vertebrates. Expression of Hoxd13 and Hoxa13 in R. erinacea suggests conserved roles for Hox genes in patterning the early hindgut.
Collapse
Affiliation(s)
- Nicole A Theodosiou
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, Maine 04011, USA.
| | | | | |
Collapse
|
28
|
Morgenstern B, Prohaska SJ, Pöhler D, Stadler PF. Multiple sequence alignment with user-defined anchor points. Algorithms Mol Biol 2006; 1:6. [PMID: 16722533 PMCID: PMC1481597 DOI: 10.1186/1748-7188-1-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 04/19/2006] [Indexed: 11/15/2022] Open
Abstract
Background Automated software tools for multiple alignment often fail to produce biologically meaningful results. In such situations, expert knowledge can help to improve the quality of alignments. Results Herein, we describe a semi-automatic version of the alignment program DIALIGN that can take pre-defined constraints into account. It is possible for the user to specify parts of the sequences that are assumed to be homologous and should therefore be aligned to each other. Our software program can use these sites as anchor points by creating a multiple alignment respecting these constraints. This way, our alignment method can produce alignments that are biologically more meaningful than alignments produced by fully automated procedures. As a demonstration of how our method works, we apply our approach to genomic sequences around the Hox gene cluster and to a set of DNA-binding proteins. As a by-product, we obtain insights about the performance of the greedy algorithm that our program uses for multiple alignment and about the underlying objective function. This information will be useful for the further development of DIALIGN. The described alignment approach has been integrated into the TRACKER software system.
Collapse
Affiliation(s)
- Burkhard Morgenstern
- Universität Göttingen, Institut für Mikrobiologie und Genetik, Abteilung für Bioinformatik, Goldschmidtstrasse. 1, D-37077 Göttingen, Germany
| | - Sonja J Prohaska
- Universität Leipzig, Institut für Informatik und Interdisziplinäres Zentrum für Bioinformatik, Kreuzstrasse 7b, D-04103 Leipzig, Germany
| | - Dirk Pöhler
- Universität Göttingen, Institut für Mikrobiologie und Genetik, Abteilung für Bioinformatik, Goldschmidtstrasse. 1, D-37077 Göttingen, Germany
| | - Peter F Stadler
- Universität Leipzig, Institut für Informatik und Interdisziplinäres Zentrum für Bioinformatik, Kreuzstrasse 7b, D-04103 Leipzig, Germany
| |
Collapse
|
29
|
Abstract
Duplication of genes, genomes, or morphological structures (or some combination of these) has long been thought to facilitate evolutionary change. Here we focus on studies of the teleost fishes to consider the conceptual similarities in the evolutionary potential of these three different kinds of duplication events. We review recent data that have confirmed the occurrence of a whole-genome duplication event in the ray-finned fish lineage, and discuss whether this event may have fuelled the radiation of teleost fishes. We then consider the fates of individual duplicated genes, from both a theoretical and an experimental viewpoint, focusing on our studies of teleost Hox genes and their functions in patterning the segmented hindbrain. Finally, we consider the duplication of morphological structures, once again drawing on our experimental studies of the hindbrain, which have revealed that experimentally induced duplicated neurons can produce functionally redundant neural circuits. We posit that the availability of duplicated material, independent of its nature, can lead to functional redundancy, which in turn enables evolutionary change.
Collapse
Affiliation(s)
- I Hurley
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 E 57th Street, Chicago, IL 60637, USA
| | | | | |
Collapse
|
30
|
Moghadam HK, Ferguson MM, Danzmann RG. Evidence for Hox Gene Duplication in Rainbow Trout (Oncorhynchus mykiss): A Tetraploid Model Species. J Mol Evol 2005; 61:804-18. [PMID: 16315109 DOI: 10.1007/s00239-004-0230-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2004] [Accepted: 04/19/2005] [Indexed: 11/28/2022]
Abstract
We examined the genomic organization of Hox genes in rainbow trout (Oncorhynchus mykiss), a tetraploid teleost derivative species, in order to test models of presumptive genomic duplications during vertebrate evolution. Thirteen putative clusters were localized in the current rainbow trout genetic map; however, analysis of the sequence data suggests the presence of at least 14 Hox clusters. Many duplicated genes appear to have been retained in the genome and share a high percentage of amino acid similarity with one another. We characterized two Hox genes located within the HoxCb cluster that may have been lost independently in other teleost species studied to date. Finally, we identified conserved syntenic blocks between salmonids and human, and provide data supporting two new linkage group homeologies (i.e., RT-3/16, RT-12/29) and three previously described homeologies (RT-2/9, RT-17/22, and RT-27/31) in rainbow trout.
Collapse
Affiliation(s)
- Hooman K Moghadam
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | | | | |
Collapse
|
31
|
Crow KD, Stadler PF, Lynch VJ, Amemiya C, Wagner GP. The "fish-specific" Hox cluster duplication is coincident with the origin of teleosts. Mol Biol Evol 2005; 23:121-36. [PMID: 16162861 DOI: 10.1093/molbev/msj020] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Hox gene complement of zebrafish, medaka, and fugu differs from that of other gnathostome vertebrates. These fishes have seven to eight Hox clusters compared to the four Hox clusters described in sarcopterygians and shark. The clusters in different teleost lineages are orthologous, implying that a "fish-specific" Hox cluster duplication has occurred in the stem lineage leading to the most recent common ancestor of zebrafish and fugu. The timing of this event, however, is unknown. To address this question, we sequenced four Hox genes from taxa representing basal actinopterygian and teleost lineages and compared them to known sequences from shark, coelacanth, zebrafish, and other teleosts. The resulting gene genealogies suggest that the fish-specific Hox cluster duplication occurred coincident with the origin of crown group teleosts. In addition, we obtained evidence for an independent Hox cluster duplication in the sturgeon lineage (Acipenseriformes). Finally, results from HoxA11 suggest that duplicated Hox genes have experienced diversifying selection immediately after the duplication event. Taken together, these results support the notion that the duplicated Hox genes of teleosts were causally relevant to adaptive evolution during the initial teleost radiation.
Collapse
Affiliation(s)
- Karen D Crow
- Department of Ecology and Evolutionary Biology, Yale University, USA.
| | | | | | | | | |
Collapse
|
32
|
Wagner GP, Takahashi K, Lynch V, Prohaska SJ, Fried C, Stadler PF, Amemiya C. Molecular evolution of duplicated ray finned fish HoxA clusters: increased synonymous substitution rate and asymmetrical co-divergence of coding and non-coding sequences. J Mol Evol 2005; 60:665-76. [PMID: 15983874 DOI: 10.1007/s00239-004-0252-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Accepted: 11/22/2004] [Indexed: 01/01/2023]
Abstract
In this study the molecular evolution of duplicated HoxA genes in zebrafish and fugu has been investigated. All 18 duplicated HoxA genes studied have a higher non-synonymous substitution rate than the corresponding genes in either bichir or paddlefish, where these genes are not duplicated. The higher rate of evolution is not due solely to a higher non-synonymous-to-synonymous rate ratio but to an increase in both the non-synonymous as well as the synonymous substitution rate. The synonymous rate increase can be explained by a change in base composition, codon usage, or mutation rate. We found no changes in nucleotide composition or codon bias. Thus, we suggest that the HoxA genes may experience an increased mutation rate following cluster duplication. In the non-Hox nuclear gene RAG1 only an increase in non-synonymous substitutions could be detected, suggesting that the increased mutation rate is specific to duplicated Hox clusters and might be related to the structural instability of Hox clusters following duplication. The divergence among paralog genes tends to be asymmetric, with one paralog diverging faster than the other. In fugu, all b-paralogs diverge faster than the a-paralogs, while in zebrafish Hoxa-13a diverges faster. This asymmetry corresponds to the asymmetry in the divergence rate of conserved non-coding sequences, i.e., putative cis-regulatory elements. These results suggest that the 5' HoxA genes in the same cluster belong to a co-evolutionary unit in which genes have a tendency to diverge together.
Collapse
Affiliation(s)
- Günter P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520-8106, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
An important mechanism for the evolution of phenotypic complexity, diversity and innovation, and the origin of novel gene functions is the duplication of genes and entire genomes. Recent phylogenomic studies suggest that, during the evolution of vertebrates, the entire genome was duplicated in two rounds (2R) of duplication. Later, approximately 350 mya, in the stem lineage of ray-finned (actinopterygian) fishes, but not in that of the land vertebrates, a third genome duplication occurred-the fish-specific genome duplication (FSGD or 3R), leading, at least initially, to up to eight copies of the ancestral deuterostome genome. Therefore, the sarcopterygian (lobe-finned fishes and tetrapods) genome possessed originally only half as many genes compared to the derived fishes, just like the most-basal and species-poor lineages of extant fishes that diverged from the fish stem lineage before the 3R duplication. Most duplicated genes were secondarily lost, yet some evolved new functions. The genomic complexity of the teleosts might be the reason for their evolutionary success and astounding biological diversity.
Collapse
Affiliation(s)
- Axel Meyer
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Germany.
| | | |
Collapse
|
34
|
Tanzer A, Amemiya CT, Kim CB, Stadler PF. Evolution of microRNAs located withinHox gene clusters. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2005; 304:75-85. [PMID: 15643628 DOI: 10.1002/jez.b.21021] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
MicroRNAs (miRNAs) form an abundant class of non-coding RNA genes that have an important function in post-transcriptional gene regulation and in particular modulate the expression of developmentally important transcription factors including Hox genes. Two families of microRNAs are genomically located in intergenic regions in the Hox clusters of vertebrates. Here we describe their evolution in detail. We show that the micro RNAs closely follow the patterns of protein evolution in the Hox clusters, which is characterized by cluster duplications followed by differential gene loss.
Collapse
Affiliation(s)
- Andrea Tanzer
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Kreuzstrasse 7b, D 04103 Leipzig, Germany.
| | | | | | | |
Collapse
|
35
|
Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, Nicaud S, Jaffe D, Fisher S, Lutfalla G, Dossat C, Segurens B, Dasilva C, Salanoubat M, Levy M, Boudet N, Castellano S, Anthouard V, Jubin C, Castelli V, Katinka M, Vacherie B, Biémont C, Skalli Z, Cattolico L, Poulain J, De Berardinis V, Cruaud C, Duprat S, Brottier P, Coutanceau JP, Gouzy J, Parra G, Lardier G, Chapple C, McKernan KJ, McEwan P, Bosak S, Kellis M, Volff JN, Guigó R, Zody MC, Mesirov J, Lindblad-Toh K, Birren B, Nusbaum C, Kahn D, Robinson-Rechavi M, Laudet V, Schachter V, Quétier F, Saurin W, Scarpelli C, Wincker P, Lander ES, Weissenbach J, Roest Crollius H. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 2004; 431:946-57. [PMID: 15496914 DOI: 10.1038/nature03025] [Citation(s) in RCA: 1421] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Accepted: 09/08/2004] [Indexed: 12/16/2022]
Abstract
Tetraodon nigroviridis is a freshwater puffer fish with the smallest known vertebrate genome. Here, we report a draft genome sequence with long-range linkage and substantial anchoring to the 21 Tetraodon chromosomes. Genome analysis provides a greatly improved fish gene catalogue, including identifying key genes previously thought to be absent in fish. Comparison with other vertebrates and a urochordate indicates that fish proteins have diverged markedly faster than their mammalian homologues. Comparison with the human genome suggests approximately 900 previously unannotated human genes. Analysis of the Tetraodon and human genomes shows that whole-genome duplication occurred in the teleost fish lineage, subsequent to its divergence from mammals. The analysis also makes it possible to infer the basic structure of the ancestral bony vertebrate genome, which was composed of 12 chromosomes, and to reconstruct much of the evolutionary history of ancient and recent chromosome rearrangements leading to the modern human karyotype.
Collapse
Affiliation(s)
- Olivier Jaillon
- UMR 8030 Genoscope, CNRS and Université d'Evry, 2 rue Gaston Crémieux, 91057 Evry Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Force A, Shashikant C, Stadler P, Amemiya CT. Comparative Genomics, cis-Regulatory Elements, and Gene Duplication. Methods Cell Biol 2004; 77:545-61. [PMID: 15602931 DOI: 10.1016/s0091-679x(04)77029-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- Allan Force
- Molecular Genetics Program, Benaroya Research Institute, Seattle, Washington 98101, USA
| | | | | | | |
Collapse
|