1
|
Elgemeie GH, Azzam RA, Osman RR. Recent advances in synthesis, metal complexes and biological evaluation of 2-aryl, 2-pyridyl and 2-pyrimidylbenzothiazoles as potential chemotherapeutics. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
2
|
Medina Marrero R, Marrero-Ponce Y, Barigye SJ, Echeverría Díaz Y, Acevedo-Barrios R, Casañola-Martín GM, García Bernal M, Torrens F, Pérez-Giménez F. QuBiLs-MAS method in early drug discovery and rational drug identification of antifungal agents. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2015; 26:943-58. [PMID: 26567876 DOI: 10.1080/1062936x.2015.1104517] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The QuBiLs-MAS approach is used for the in silico modelling of the antifungal activity of organic molecules. To this effect, non-stochastic (NS) and simple-stochastic (SS) atom-based quadratic indices are used to codify chemical information for a comprehensive dataset of 2478 compounds having a great structural variability, with 1087 of them being antifungal agents, covering the broadest antifungal mechanisms of action known so far. The NS and SS index-based antifungal activity classification models obtained using linear discriminant analysis (LDA) yield correct classification percentages of 90.73% and 92.47%, respectively, for the training set. Additionally, these models are able to correctly classify 92.16% and 87.56% of 706 compounds in an external test set. A comparison of the statistical parameters of the QuBiLs-MAS LDA-based models with those for models reported in the literature reveals comparable to superior performance, although the latter were built over much smaller and less diverse datasets, representing fewer mechanisms of action. It may therefore be inferred that the QuBiLs-MAS method constitutes a valuable tool useful in the design and/or selection of new and broad spectrum agents against life-threatening fungal infections.
Collapse
Affiliation(s)
- R Medina Marrero
- a Computer-Aided Molecular 'Biosilico' Discovery and Bioinformatic Research International Network (CAMD-BIR-IN) , Cartagena de Indias , Bolivar , Colombia
- b Department of Microbiology , Chemical Bioactive Center, Central University of Las Villas , Villa Clara , Cuba
| | - Y Marrero-Ponce
- a Computer-Aided Molecular 'Biosilico' Discovery and Bioinformatic Research International Network (CAMD-BIR-IN) , Cartagena de Indias , Bolivar , Colombia
- c Grupo de Investigación en Estudios Químicos y Biológicos, Facultad de Ciencias Básicas , Universidad Tecnológica de Bolívar , Cartagena de Indias , Bolívar , Colombia
- d Unidad de Investigación de Diseño de Fármacos y Conectividad Molecular, Departamento de Química Física, Facultad de Farmacia , Universitat de València , Valencia , Spain
- h Grupo de Investigación Microbiología y Ambiente (GIMA) . Programa de Bacteriología, Facultad Ciencias de la Salud, Universidad de San Buenaventura , Calle Real de Ternera, 130010, Cartagena (Bolivar) , Colombia
| | - S J Barigye
- a Computer-Aided Molecular 'Biosilico' Discovery and Bioinformatic Research International Network (CAMD-BIR-IN) , Cartagena de Indias , Bolivar , Colombia
- e Departamento de Química , Universidade Federal de Lavras , Lavras , MG , Brazil
| | - Y Echeverría Díaz
- a Computer-Aided Molecular 'Biosilico' Discovery and Bioinformatic Research International Network (CAMD-BIR-IN) , Cartagena de Indias , Bolivar , Colombia
| | - R Acevedo-Barrios
- c Grupo de Investigación en Estudios Químicos y Biológicos, Facultad de Ciencias Básicas , Universidad Tecnológica de Bolívar , Cartagena de Indias , Bolívar , Colombia
| | - G M Casañola-Martín
- a Computer-Aided Molecular 'Biosilico' Discovery and Bioinformatic Research International Network (CAMD-BIR-IN) , Cartagena de Indias , Bolivar , Colombia
- d Unidad de Investigación de Diseño de Fármacos y Conectividad Molecular, Departamento de Química Física, Facultad de Farmacia , Universitat de València , Valencia , Spain
- f Facultad de Ingeniería Ambiental , Universidad Estatal Amazónica , Puyo , Ecuador
| | - M García Bernal
- b Department of Microbiology , Chemical Bioactive Center, Central University of Las Villas , Villa Clara , Cuba
| | - F Torrens
- g Institut Universitari de Ciència Molecular, Universitat de València , Valencia , Spain
| | - F Pérez-Giménez
- d Unidad de Investigación de Diseño de Fármacos y Conectividad Molecular, Departamento de Química Física, Facultad de Farmacia , Universitat de València , Valencia , Spain
| |
Collapse
|
3
|
Sharma PC, Sinhmar A, Sharma A, Rajak H, Pathak DP. Medicinal significance of benzothiazole scaffold: an insight view. J Enzyme Inhib Med Chem 2012; 28:240-66. [PMID: 23030043 DOI: 10.3109/14756366.2012.720572] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Heterocycles bearing nitrogen, sulphur and thiazole moieties constitute the core structure of a number of biologically interesting compounds. Benzothiazole, a group of xenobiotic compounds containing a benzene ring fused with a thiazole ring, are used worldwide for a variety of therapeutic applications. Benzothiazole and their heterocyclic derivatives represent an important class of compounds possessing a wide spectrum of biological activities. The myriad spectrum of medicinal properties associated with benzothiazole related drugs has encouraged the medicinal chemists to synthesize a large number of novel therapeutic agents. Several analogues containing benzothiazole ring system exhibit significant antitumour, antimicrobial, antidiabetic, anti-inflammatory, anticonvulsant, antiviral, antioxidant, antitubercular, antimalarial, antiasthmatic, anthelmintic, photosensitizing, diuretic, analgesic and other activities. This article is an attempt to present the research work reported in recent scientific literature on different pharmacological activities of benzothiazole compounds.
Collapse
|
4
|
Rao H, Zeng X, Wang Y, He H, Zhu F, Li Z, Chen Y. Identification of DNA adduct formation of small molecules by molecular descriptors and machine learning methods. MOLECULAR SIMULATION 2012. [DOI: 10.1080/08927022.2011.616891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Zhong L, Ma CY, Zhang H, Yang LJ, Wan HL, Xie QQ, Li LL, Yang SY. A prediction model of substrates and non-substrates of breast cancer resistance protein (BCRP) developed by GA-CG-SVM method. Comput Biol Med 2011; 41:1006-13. [PMID: 21924412 DOI: 10.1016/j.compbiomed.2011.08.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Revised: 08/20/2011] [Accepted: 08/26/2011] [Indexed: 02/05/2023]
Abstract
Breast cancer resistance protein (BCRP) is one of the key multi-drug resistance proteins, which significantly influences the therapeutic effects of many drugs, particularly anti-cancer drugs. Thus, distinguishing between substrates and non-substrates of BCRP is important not only for clinical use but also for drug discovery and development. In this study, a prediction model of the substrates and non-substrates of BCRP was developed using a modified support vector machine (SVM) method, namely GA-CG-SVM. The overall prediction accuracy of the established GA-CG-SVM model is 91.3% for the training set and 85.0% for an independent validation set. For comparison, two other machine learning methods, namely, C4.5 DT and k-NN, were also adopted to build prediction models. The results show that the GA-CG-SVM model is significantly superior to C4.5 DT and k-NN models in terms of the prediction accuracy. To sum up, the prediction model of BCRP substrates and non-substrates generated by the GA-CG-SVM method is sufficiently good and could be used as a screening tool for identifying the substrates and non-substrates of BCRP.
Collapse
Affiliation(s)
- Lei Zhong
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, PR China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Rao H, Yang G, Tan N, Li P, Li Z, Li X. Prediction of HIV-1 Protease Inhibitors Using Machine Learning Approaches. ACTA ACUST UNITED AC 2009. [DOI: 10.1002/qsar.200960021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|