1
|
de Melo Cordeiro Eulálio M, de Lima AM, Brant RSC, Francisco AF, Santana HM, Paloschi MV, da Silva Setúbal S, da Silva CP, Silva MDS, Boeno CN, Kayano AM, Rita PHS, de Azevedo Calderon L, Soares AM, Salvador DPM, Zuliani JP. Characterization of a novel acidic phospholipase A 2 isolated from the venom of Bothrops mattogrossensis: From purification to structural modeling. Int J Biol Macromol 2025; 292:139217. [PMID: 39732268 DOI: 10.1016/j.ijbiomac.2024.139217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Phospholipases A2 (PLA2s) are highly prevalent in Bothrops snake venom and play a crucial role in inflammatory responses and immune cell activation during envenomation. Despite their significance, the specific role of PLA2s from Bothrops mattogrossensis venom (BmV) in inflammation is not fully understood. This study sought to isolate and characterize a novel acidic PLA2 from BmV, designated BmPLA2-A, and to evaluate its effects on human umbilical vein endothelial cells (HUVECs), with a specific focus on cytotoxicity, adhesion, and detachment. BmPLA2-A was isolated through a multi-step chromatographic procedure, involving cation exchange (CM-Sepharose), hydrophobic interaction (n-butyl-Sepharose-HP), and reversed-phase (C-18) chromatography. SDS-PAGE analysis revealed a single protein band of approximately 15 kDa. The primary structure of BmPLA2-A was determined by LC-MS/MS, while its tertiary structure was modeled using AlphaFold. Enzymatic activity was verified with the synthetic substrate 4N3OBA. Molecular dynamics simulations were conducted to further investigate the catalytic mechanism of BmPLA2-A at the molecular level. In vitro assays on HUVECs revealed that BmPLA2-A neither induce cytokine release (IL-6, IL-8, IL-1β, TNF) nor affected cell viability, adhesion, or detachment. The characteristics of BmPLA2-A are consistent with those of acidic Asp-49 PLA2 enzymes, highlighting its potential involvement in the cytotoxic and inflammatory effects of the venom.
Collapse
Affiliation(s)
- Micaela de Melo Cordeiro Eulálio
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Laboratory of Protein Biotechnology and Bioactive Compounds (LABIOPROT), Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Anderson Maciel de Lima
- Laboratory of Protein Biotechnology and Bioactive Compounds (LABIOPROT), Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | | | - Aleff Ferreira Francisco
- Laboratory of Protein Biotechnology and Bioactive Compounds (LABIOPROT), Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Hallison Mota Santana
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Mauro Valentino Paloschi
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Sulamita da Silva Setúbal
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Carolina Pereira da Silva
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Milena Daniela Souza Silva
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Charles Nunes Boeno
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Anderson Makoto Kayano
- Laboratory of Protein Biotechnology and Bioactive Compounds (LABIOPROT), Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Center for Research in Tropical Medicine (CEPEM/SESAU-RO), Porto Velho, RO, Brazil
| | | | - Leonardo de Azevedo Calderon
- Center for the Study of Biomolecules Applied to Health (CEBio), Oswaldo Cruz Foundation, Fiocruz Rondônia, Porto Velho, RO, Brazil
| | - Andreimar Martins Soares
- Laboratory of Protein Biotechnology and Bioactive Compounds (LABIOPROT), Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; National Institute of Science and Technology of Epidemiology of Western Amazon, INCT-EpiAmO, Brazil
| | | | - Juliana Pavan Zuliani
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Department of Medicine, Federal University of Rondonia (UNIR), Porto Velho, RO, Brazil.
| |
Collapse
|
3
|
Ojeda PG, Ramírez D, Alzate-Morales J, Caballero J, Kaas Q, González W. Computational Studies of Snake Venom Toxins. Toxins (Basel) 2017; 10:E8. [PMID: 29271884 PMCID: PMC5793095 DOI: 10.3390/toxins10010008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/09/2017] [Accepted: 12/18/2017] [Indexed: 12/17/2022] Open
Abstract
Most snake venom toxins are proteins, and participate to envenomation through a diverse array of bioactivities, such as bleeding, inflammation, and pain, cytotoxic, cardiotoxic or neurotoxic effects. The venom of a single snake species contains hundreds of toxins, and the venoms of the 725 species of venomous snakes represent a large pool of potentially bioactive proteins. Despite considerable discovery efforts, most of the snake venom toxins are still uncharacterized. Modern bioinformatics tools have been recently developed to mine snake venoms, helping focus experimental research on the most potentially interesting toxins. Some computational techniques predict toxin molecular targets, and the binding mode to these targets. This review gives an overview of current knowledge on the ~2200 sequences, and more than 400 three-dimensional structures of snake toxins deposited in public repositories, as well as of molecular modeling studies of the interaction between these toxins and their molecular targets. We also describe how modern bioinformatics have been used to study the snake venom protein phospholipase A2, the small basic myotoxin Crotamine, and the three-finger peptide Mambalgin.
Collapse
Affiliation(s)
- Paola G Ojeda
- Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, 3460000 Talca, Chile.
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomedicas, Universidad Autonoma de Chile, 3460000 Talca, Chile.
| | - David Ramírez
- Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, 3460000 Talca, Chile.
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomedicas, Universidad Autonoma de Chile, 3460000 Talca, Chile.
| | - Jans Alzate-Morales
- Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, 3460000 Talca, Chile.
| | - Julio Caballero
- Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, 3460000 Talca, Chile.
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Wendy González
- Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, 3460000 Talca, Chile.
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, 3460000 Talca, Chile.
| |
Collapse
|
4
|
Structural Insight into Binding Mode of 9-Hydroxy Aristolochic Acid, Diclofenac and Indomethacin to PLA 2. Interdiscip Sci 2016; 10:400-410. [PMID: 27878455 DOI: 10.1007/s12539-016-0197-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 10/25/2016] [Accepted: 11/01/2016] [Indexed: 01/02/2023]
Abstract
Phospholipase A2 (PLA2) catalyzes the hydrolysis of phospholipids into arachidonic acid and lysophospholipids. Arachidonic acid is modified by cyclooxygenases into active compounds called eicosanoids that act as signaling molecules in a number of physiological processes. Excessive production of eicosanoids leads to several pathological conditions such as inflammation. In order to block the inflammatory effect of these compounds, upstream enzymes such as PLA2 are valid targets. In the present contribution, molecular dynamic analysis was performed to evaluate the binding of diclofenac, 9-hydroxy aristolochic acid (9-HAA) and indomethacin to PLA2. Obtained results revealed that 9-HAA could form a more stable complex with PLA2 when compared to diclofenac and indomethacin. Furthermore, analysis of intermolecular binding energy components indicated that hydrophobic interactions were dominant in binding process. On the basis of obtained data, inhibitors bearing fused rings with hydrogen acceptor/donor substituent(s) interacted with His48 and Asp49 residues of the active site. More affinity toward PLA2 might be envisaged through negatively charged moieties via interaction with Trp31, Lys34 and Lys69.
Collapse
|
6
|
Ramakrishnan C, Joshi V, Joseph JM, Vishwanath BS, Velmurugan D. Identification of Novel Inhibitors ofDaboia russelliPhospholipase A2Using the Combined Pharmacophore Modeling Approach. Chem Biol Drug Des 2014; 84:379-92. [DOI: 10.1111/cbdd.12332] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 03/26/2014] [Accepted: 03/28/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Chandrasekaran Ramakrishnan
- Centre of Advanced Study in Crystallography and Biophysics; University of Madras; Maraimalai (Guindy) Campus Chennai 600025 India
| | - Vikram Joshi
- Department of Studies in Biochemistry; University of Mysore; Manasagangotri Mysore Karnataka 570006 India
| | - Joseph Mavelithuruthel Joseph
- Centre of Advanced Study in Crystallography and Biophysics; University of Madras; Maraimalai (Guindy) Campus Chennai 600025 India
| | - Bannikuppe S. Vishwanath
- Department of Studies in Biochemistry; University of Mysore; Manasagangotri Mysore Karnataka 570006 India
| | - Devadasan Velmurugan
- Centre of Advanced Study in Crystallography and Biophysics; University of Madras; Maraimalai (Guindy) Campus Chennai 600025 India
| |
Collapse
|
7
|
Ramakrishnan C, Subramanian V, Velmurugan D. Molecular Dynamics Study of Secretory Phospholipase A2 of Russell’s Viper and Bovine Pancreatic Sources. J Phys Chem B 2010; 114:13463-72. [DOI: 10.1021/jp102073f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- C. Ramakrishnan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, India, and Central Leather Research Institute, Adyar, Chennai 600020, India
| | - V. Subramanian
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, India, and Central Leather Research Institute, Adyar, Chennai 600020, India
| | - D. Velmurugan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, India, and Central Leather Research Institute, Adyar, Chennai 600020, India
| |
Collapse
|