1
|
Van PN, Do SQ, Fonseka WTL, Wakai T, Funahashi H. Characteristics of porcine oocyte-cumulus complexes derived from various sizes of antral follicles and classified by brilliant cresyl blue staining, and developmental competence of the oocytes. Theriogenology 2025; 236:74-81. [PMID: 39922120 DOI: 10.1016/j.theriogenology.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/01/2025] [Accepted: 02/01/2025] [Indexed: 02/10/2025]
Abstract
The present study sought to determine the characteristics of porcine oocyte-cumulus complexes (OCCs) derived from very small and small antral follicles (with less than 1 mm and 1-3 mm in diameter, respectively; VSF and SF) in comparison with controls from medium ones (with 3-6 mm in diameter; MF). Additionally, the present study examined the utility of brilliant cresyl blue (BCB) staining for assessing these OCCs. The incidence of BCB- oocytes in VSF- and SF-derived OCCs was higher than that in MF-derived OCCs. Although the meiotic and developmental competences of BCB+ oocytes from MF were superior to those from VSF and SF, blastocysts were successfully obtained from BCB+ oocytes even derived from VSF. The mean numbers of both total and viable cumulus cells surrounding an oocyte were significantly affected not only by the origin of the OCCs, but also by the BCB status of the oocytes (largest in MF-derived OCCs containing BCB+ oocytes). Although the outer and inner diameters of zona pellucida were affected by the origin of OCCs and the BCB status of oocytes (largest in MF-derived oocytes), the ooplasmic diameter of BCB+ oocytes did not differ among those derived from VSF, SF, and MF. Regardless of the BCB status, the transcriptional levels of G6PD and TKT in cumulus cells decreased during follicular development from VSF to MF, whereas the RPIA mRNA level in cumulus cells of MF-derived BCB+ OCCs was lower than in the others. These results underscore the utility of BCB staining for selecting MF-, SF-, and even VSF-derived OCCs containing oocytes with relatively higher meiotic and developmental competences, as well as the importance of having a sufficient number of healthy cumulus cells expressing genes related to the pentose phosphate pathway at lower levels.
Collapse
Affiliation(s)
- Phong Ngoc Van
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Son Quang Do
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | | | - Takuya Wakai
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Hiroaki Funahashi
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan.
| |
Collapse
|
2
|
Do SQ, Nguyen HT, Wakai T, Funahashi H. Exogenous expression of PGC-1α during in vitro maturation impairs the developmental competence of porcine oocytes. Theriogenology 2024; 228:30-36. [PMID: 39089072 DOI: 10.1016/j.theriogenology.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/09/2024] [Accepted: 07/24/2024] [Indexed: 08/03/2024]
Abstract
Objectives of the current study were to examine the effects of exogenous expression of PGC-1α, which is a transcription factor responsive for controlling mitochondrial DNA (mtDNA) replication, mitochondria quantity control, mitochondrial biogenesis, and reactive oxygen species (ROS) maintenance, in porcine oocytes during in-vitro maturation (IVM) on the developmental competence, as well as mitochondrial quantity and function. Exogenous over-expression of PGC-1α by injection of the mRNA construct into oocytes 20 h after the start of IVM culture significantly increased the copy number of mtDNA in the oocytes, but reduced the incidences of oocytes matured to the metaphase-II stage after the IVM culture for totally 44 h and completely suppressed the early development in vitro to the blastocyst stage following parthenogenetic activation. The exogenous expression of PGC-1α also significantly induced spindle defects and chromosome misalignments. Furthermore, markedly higher ROS levels were observed in the PGC-1α-overexpressed mature oocytes, whereas mRNA level of SOD1, encoded for a ROS scavenging enzyme, was decreased. These results conclude that forced expression of PGC-1α successfully increase mtDNA copy number but led to increased ROS production, evidently by downregulation of SOD1 gene expression, inducement of spindle aberration/chromosomal misalignment, and consequently reduction in the meiotic and developmental competences of porcine oocytes.
Collapse
Affiliation(s)
- Son Quang Do
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Hai Thanh Nguyen
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Takuya Wakai
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Hiroaki Funahashi
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan.
| |
Collapse
|
3
|
Fonseka WTL, Do SQ, Van PN, Nguyen HT, Wakai T, Funahashi H. The impact of cumulus cell viability and pre-culture with the healthy cell mass on brilliant cresyl blue (BCB) staining assessment and meiotic competence of suboptimal porcine oocytes. Theriogenology 2024; 226:158-166. [PMID: 38901215 DOI: 10.1016/j.theriogenology.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/31/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Objectives of the present study were to investigate the characteristics including glucose-6-phosphate dehydrogenase activity, as determined by Brilliant Cresyl Blue (BCB) staining, of suboptimal porcine oocytes and to enhance the meiotic competence of those through pre-culture with cumulus cell masses (CCMs). Percentage of oocyte-cumulus complexes (OCCs) derived from small follicles (SF; <3 mm in diameter) containing the oocytes that were assessed as BCB-negative (BCB-) was significantly higher than those derived from medium follicles (MF; 3-6 mm in diameter). Degrees of dead cumulus cells were significantly higher in OCCs containing BCB- oocytes, regardless of the origin of OCCs (MF vs. SF), than those containing BCB-positive (BCB+) ones. Exposing OCCs containing BCB+ oocytes to the apoptosis inducer, carbonyl cyanide m-chlorophenylhydrazone, for 20 h significantly induced the transition to BCB- and meiotic progression of exposed OCCs were significantly reduced in both SF and MF derived ones. Transit of BCB- oocytes to BCB+ was induced when OCCs were pre-cultured with CCMs of MF derived OCCs containing BCB+ oocytes for 20 h before IVM. This pre-culture also significantly increased the meiotic competence of BCB- oocytes, particularly in SF derived ones. However, reactive oxygen species levels were significantly higher in BCB+ oocytes as compared with BCB- ones, regardless of pre-culture with CCMs, whereas no significant differences were found in the ATP contents among the treatment groups. In conclusion, the BCB result of oocytes could be regulated by the healthy status and content of surrounding cumulus cells and the meiotic competence of suboptimal BCB- porcine oocytes is improved by pre-culture with healthy CCMs.
Collapse
Affiliation(s)
| | - Son Quang Do
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Phong Ngoc Van
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Hai Thanh Nguyen
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Takuya Wakai
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Hiroaki Funahashi
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan.
| |
Collapse
|
4
|
Zhang FL, Zhu WM, He TR, Zhao YT, Ge W, Tan JH, Shen W. Comparative transcriptomic analysis reveals that TPX2 and AURXA are involved in porcine PCV2 infection. Gene 2022; 834:146649. [PMID: 35680028 DOI: 10.1016/j.gene.2022.146649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/23/2022] [Accepted: 06/02/2022] [Indexed: 11/04/2022]
Abstract
Porcine circovirus type 2 (PCV2) has been a notorious killer for the pig industry, causing substantial economic losses worldwide. However, its pathogenesis is still poorly understood. Comparative transcriptomic analysis and weighted gene co-expression network analysis (WGCNA) were performed in different porcine tissues after PCV2 infection. Our comparative transcriptomic analysis obtained 40 key differentially expressed genes (DEGs), and our WGCNA identified 458 hub genes. Significantly, both TPX2 microtubule nucleation factor (TPX2) and Aurora kinase A (AURKA) are included in these key DEGs and hubs genes. Our gene ontology (GO) analysis indicated that the key DEGs and hub genes participated in cell cycle regulation and immune response. The expressive levels of TPX2 and AURKA went down in the spleen but up in the kidneys after infection with PCV2. We conclude that TPX2 and AURKA played an essential role in PCV2 infection.
Collapse
Affiliation(s)
- Fa-Li Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China; College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei-Min Zhu
- Rural Agriculture Bureau of Chengyang District, Qingdao 266109, China
| | - Tao-Ran He
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Yun-Ting Zhao
- Laizhou Animal Husbandry and Veterinary Station, Yantai 261400, China
| | - Wei Ge
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Jing-He Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
5
|
Davoodian N, Kadivar A, Davoodian N, Ahmadi E, Nazari H, Mehrban H. The effect of quercetin in the maturation media on cumulus-granulosa cells and the developmental competence of bovine oocytes. Theriogenology 2022; 189:262-269. [DOI: 10.1016/j.theriogenology.2022.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 11/26/2022]
|
6
|
Glucose in a maturation medium with reduced NaCl improves oocyte maturation and embryonic development after somatic cell nuclear transfer and in vitro fertilization in pigs. ZYGOTE 2021; 29:293-300. [PMID: 33653431 DOI: 10.1017/s0967199420000891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This study was conducted to examine whether glucose in maturation medium containing reduced NaCl could improve oocyte maturation and embryonic development in pigs. The base medium was bovine serum albumin-free porcine zygote medium (PZM)-3 containing 10% (v/v) pig follicular fluid (FPZM) or 0.1% (w/v) polyvinyl alcohol (PPZM). Using each medium, the effects of NaCl concentrations (108 and 61.6 mM) and 5.56 mM glucose supplementation (designated as PZM108N, PZM108G, PZM61N, and PZM61G, respectively) were examined using a 2 × 2 factorial arrangement. When oocytes were matured in FPZM, glucose supplementation improved nuclear maturation compared with no supplementation, regardless of the NaCl concentrations. FPZM61G showed a higher blastocyst formation compared with FPZM108N and FPZM108G after parthenogenesis (PA). Blastocyst formations of somatic cell nuclear transfer (SCNT) embryos derived from FPZM61N and FPZM61G were higher compared with those of oocytes from FPZM108N. When oocytes were matured in PPZM, glucose added to PPZM108 and PPZM61 increased nuclear maturation compared with no supplementation. However, glucose added to PPZM108 did not alter embryonic development after PA. Additionally, oocytes matured in PPZM61G showed a higher blastocyst formation compared with those from PPZM61N. In SCNT, blastocyst formation was not influenced by glucose supplementation of PPZM108, but was increased by maturation in glucose-supplemented PPZM61. In embryonic development of in vitro fertilization (IVF), oocytes matured in medium with reduced NaCl and glucose showed significantly higher blastocyst formation compared with those matured in PPZM108G. Our results demonstrated that glucose in maturation medium containing 61.6 mM NaCl increased oocyte maturation and embryonic development after PA, SCNT, and IVF.
Collapse
|
7
|
Moros-Nicolás C, Izquierdo-Rico MJ, Li Y, González-Brusi L, Romar R, Funahashi H. Relative transcript abundance in porcine cumulus cells collected from different sized follicles. Reprod Domest Anim 2020; 56:374-380. [PMID: 33320378 DOI: 10.1111/rda.13881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/11/2020] [Indexed: 11/30/2022]
Abstract
Crosstalk between the oocyte and surrounding cumulus cells (CCs) is essential for the production of competent oocytes. Previous studies have analysed the relative transcript abundance in oocytes derived from small (SF: <3 mm diameter)- and medium-sized (MF: 3-6 mm diameter) follicles to determine the potential use of SF-derived oocytes in assisted reproductive technologies (ART). The aim of this study was to examine the relative transcript abundance of CCs obtained from cumulus-oocyte complexes (COCs) derived from SF and MF. Nine genes were selected according to their importance for developmental competence: AT-rich interaction domain 1B (ARID1B), bone morphogenic protein receptor 2 (BMPR2), CD44, follicle-stimulating hormone receptor (FSHR), follistatin (FST), inhibin beta-A (INHBA), luteinizing hormone receptor (LHR), nuclear receptor subfamily 2 group F member 6 (NR2F6) and vascular endothelial growth factor A (VEGFA). The expression of these genes was analysed by RT-qPCR. The results pointed to significant differences in five genes, and the relative transcript abundance of SF-derived CCs was lower in the case of INHBA, but higher in FSHR, FST, LHR and NR2F6 compared with MF-derived CCs. We provide information of gene activity in the porcine CCs from different sized follicles, thus improving our understanding of oocyte biology and providing new markers that identify viable and competent oocytes.
Collapse
Affiliation(s)
- Carla Moros-Nicolás
- Department of Cell Biology and Histology, School of Medicine, University of Murcia, Murcia, Spain.,Department of Animal Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Mª José Izquierdo-Rico
- Department of Cell Biology and Histology, School of Medicine, University of Murcia, Murcia, Spain.,Department of Animal Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Yang Li
- Department of Animal Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Leopoldo González-Brusi
- Department of Cell Biology and Histology, School of Medicine, University of Murcia, Murcia, Spain
| | - Raquel Romar
- Department of Physiology, Faculty of Veterinary, University of Murcia, Murcia, Spain
| | - Hiroaki Funahashi
- Department of Animal Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
8
|
Zhu S, Jia YJ, Pan LZ, Gong S, Sun MJ, Wang GL, Luo MJ, Tan JH. Meiotic block with roscovitine improves competence of porcine oocytes by fine-tuning activities of different cyclin-dependent kinases. J Cell Physiol 2020; 235:7530-7540. [PMID: 32100885 DOI: 10.1002/jcp.29655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/13/2020] [Indexed: 11/07/2022]
Abstract
Successful use of oocytes from small follicles (SFs) is of great importance for animal embryo production and human in vitro fertilization with reduced hormone-related side effects. How in vitro meiotic arrest maintenance (MAM) increases the competence of oocytes is not clear. In this study, pig oocytes recovered from SF of 1-2 mm and medium-follicles (MF) of 3-6 mm in diameter from abattoir ovaries were treated by various MAM treatments to improve their competence. The results showed that 25 µM roscovitine or 1 mM db-cAMP efficiently blocked germinal vesicle breakdown in both SF and MF oocytes suggesting a similar cyclin-dependent kinase (CDK) 1 level between the two oocyte groups. MAM with 15- and 25-µM roscovitine alone or with 1-mM db-cAMP improved competence of SF and MF oocytes, respectively, with a promoted chromatin configuration transition from surrounded nucleoli (SN) to re-decondensation (RDC) pattern that supported substantial gene transcription. However, MAM with db-cAMP alone or with higher concentrations of roscovitine did not improve oocyte competence, could not support an SN-to-RDC transition, and/or evoked a premature chromatin condensation (PMC) that suppressed gene transcription. Both CDK2 and CDK5 contents were higher (p < .05) in MF than in SF oocytes. It is concluded that the competence of pig oocytes, particularly that of SF oocytes can be improved by MAM using a proper roscovitine concentration that promotes gene transcription by inhibiting CDK5 while letting CDK2 off to prevent PMC.
Collapse
Affiliation(s)
- Shuai Zhu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Tai'an, China
| | - Ying-Jun Jia
- College of Life Science, North Agricultural University, Harbin, China
| | - Liu-Zhu Pan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Tai'an, China
| | - Shuai Gong
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Tai'an, China
| | - Ming-Ju Sun
- College of Life Science, North Agricultural University, Harbin, China
| | - Guo-Liang Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Tai'an, China
| | - Ming-Jiu Luo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Tai'an, China
| | - Jing-He Tan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Tai'an, China
- College of Life Science, North Agricultural University, Harbin, China
| |
Collapse
|
9
|
Kohata-Ono C, Wakai T, Funahashi H. The autophagic inducer and inhibitor display different activities on the meiotic and developmental competencies of porcine oocytes derived from small and medium follicles. J Reprod Dev 2019; 65:527-532. [PMID: 31685760 PMCID: PMC6923152 DOI: 10.1262/jrd.2019-112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study aimed to examine the effect of rapamycin (autophagy inducer) and 3-methyladenine (3-MA, autophagy inhibitor) on the meiotic and developmental competencies of porcine oocytes derived from medium follicles (MF, 3-6 mm in diameter) and small follicles (SF, 1-2 mm in diameter) during in vitro maturation (IVM) process. The presence of 1 nM but not 10 nM rapamycin significantly increased the maturation rate of MF-derived oocytes (P < 0.05). However, the maturation rate of SF-derived oocytes was not affected by rapamycin at both concentrations (1 nM and 10 nM). The maturation rate of MF-derived oocytes decreased significantly (P < 0.05) in the presence of 0.2 mM but not 2 mM 3-MA than non-supplemented control. In contrast, in SF-derived oocytes, 3-MA at both 0.2 and 2 mM concentrations did not affect the maturation rates. The presence of 1 nM rapamycin significantly increased the blastocyst formation rate of MF-derived mature oocytes following parthenogenetic activation (P < 0.05). However, the blastocyst formation rate of SF-derived mature oocytes was not affected by the presence of rapamycin. The presence of 3-MA significantly reduced the blastocyst formation rate of MF-derived mature oocytes but did not change that of SF-derived oocytes. In conclusion, our study results show differences in activity of the autophagy inducer and inhibitor on the meiotic and developmental competencies of MF- and SF-derived porcine oocytes.
Collapse
Affiliation(s)
- Chiyuki Kohata-Ono
- Department of Animal Science, Graduate of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Takuya Wakai
- Department of Animal Science, Graduate of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Hiroaki Funahashi
- Department of Animal Science, Graduate of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
10
|
Montes-Quiroz GL, Sánchez-Dávila F, Domínguez-Díaz D, Vázquez-Armijo JF, Grizelj J, Ledezma-Torres RA, Cervantes-Vega R, Arce-Vázquez N, Garza-Brenner E, Bernal-Barragán H. Influence of eCG and breed on the number of oocytes collected and the production of in vitro embryos of young goats during the reproductive season. Trop Anim Health Prod 2019; 51:2521-2527. [PMID: 31209690 DOI: 10.1007/s11250-019-01972-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/06/2019] [Indexed: 11/25/2022]
Abstract
The objective of this study was to determine the effect of breed and equine chorionic gonadotropin (eCG) on ovarian response and in vitro embryo production from young goats. Thirty-one (12 Alpine, 10 Nubian, and 9 Saanen) were randomly assigned into three treatments of eCG (T1, 0 IU; T2, 500 IU; and T3, 1000 IU). Alpine goats showed the highest amount and largest size of follicles (P = 0.003). The effect of eCG dose 24 h post application was significant (P < 0.05), and was superior in goats undergoing T2. The aspiration rate of cumulus-oocyte complexes (COC) was 34% (P > 0.05), except for percentage of denuded oocytes, which obtained the highest number (P = 0.003) in the Saanen goats. The same difference was found (P = 0.02) in oocytes grade III in T2 and T3, with 42.5 and 37.9% respectively. In vitro embryo production was 80.0% of IVF/cleavage in the Alpine goats (P = 0.003). Embryo production was the greatest for T2 (69.2%; P = 0.004). T3 goats had higher percentage of morula stage (66.6%; P = 0.030). It is concluded that the application of eCG has a significant effect on the ovarian status, and quality and quantity of embryos with a differential response depending on the breed.
Collapse
Affiliation(s)
- Gabriela Lisset Montes-Quiroz
- Posgrado Conjunto Facultad de Agronomía-Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, Campus de Ciencias Agropecuarias, 66050, General Escobedo, N.L., Mexico
| | - Fernando Sánchez-Dávila
- Posgrado Conjunto Facultad de Agronomía-Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, Campus de Ciencias Agropecuarias, 66050, General Escobedo, N.L., Mexico. .,Facultad de Agronomía, Unidad Académica Marín, Laboratorio de Reproducción Animal, Universidad Autónoma de Nuevo León, 66700, Marín, N.L., Mexico.
| | - David Domínguez-Díaz
- Unión Ganadera Regional de Nuevo León, Centro de Biotecnología Reproductiva, General Bravo, N.L., Mexico
| | - José Fernanco Vázquez-Armijo
- Centro Universitario UAEM Temascaltepec, Universidad Autónoma del Estado de México, 51300, Temascaltepec, Mexico
| | - Juraj Grizelj
- Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Rogelio A Ledezma-Torres
- Posgrado Conjunto Facultad de Agronomía-Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, Campus de Ciencias Agropecuarias, 66050, General Escobedo, N.L., Mexico
| | - Rubén Cervantes-Vega
- Posgrado Conjunto Facultad de Agronomía-Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, Campus de Ciencias Agropecuarias, 66050, General Escobedo, N.L., Mexico
| | - Nestor Arce-Vázquez
- Posgrado Conjunto Facultad de Agronomía-Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, Campus de Ciencias Agropecuarias, 66050, General Escobedo, N.L., Mexico
| | - Estela Garza-Brenner
- Posgrado Conjunto Facultad de Agronomía-Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, Campus de Ciencias Agropecuarias, 66050, General Escobedo, N.L., Mexico
| | - Hugo Bernal-Barragán
- Posgrado Conjunto Facultad de Agronomía-Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, Campus de Ciencias Agropecuarias, 66050, General Escobedo, N.L., Mexico
| |
Collapse
|
11
|
Ferré-Pujol P, Nguyen XK, Nagahara T, Bui TTM, Wakai T, Funahashi H. Removal of cumulus cells around 20 h after the start of in vitro maturation improves the meiotic competence of porcine oocytes via reduction in cAMP and cGMP levels. J Reprod Dev 2019; 65:177-182. [PMID: 30745497 PMCID: PMC6473111 DOI: 10.1262/jrd.2018-130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We examined the effect of the timing of removing cumulus cells surrounding porcine oocytes from small follicles (SFs, < 3 mm in diameter) and medium follicles (MFs; 3–6 mm in diameter)
on the meiotic and developmental competence of the oocytes. Cumulus-oocyte complexes (COCs) were collected from SFs and MFs, and the oocytes were denuded at 0, 20, and 44 h after the start
of in vitro maturation (IVM), and the meiotic progression of the oocytes was assessed at the end of the IVM period. The incidence of mature oocytes was significantly
affected by both the origin of the COCs and the time when the oocytes were denuded. Although the percentage of mature oocytes was always higher when the COCs were collected from MFs than
that when the COCs were collected from SFs, the maturation rate was significantly higher when the oocytes were denuded at 20 h than when they were denuded at 44 h after the start of IVM.
When the mature oocytes were activated electrically, the developmental competence of the oocytes denuded at 20 and 44 h to reach the blastocyst stage did not differ, whereas the competence
of the MF-derived oocytes was significantly higher than that of SF-derived oocytes. When the intracellular cAMP and cGMP levels in SF-derived oocytes were examined at 24 h of IVM, the levels
of both were significantly decreased only in the oocytes denuded at 20 h. In conclusion, denuding oocytes at 20 h of IVM caused a significant reduction in ooplasmic cAMP and cGMP levels and
increased the meiotic competence of the oocytes without any reduction in blastocyst formation, even in the case of SF-derived oocytes.
Collapse
Affiliation(s)
- Pilar Ferré-Pujol
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Xuan Khanh Nguyen
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan.,Department of Veterinary and Animal Science, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Tomoki Nagahara
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Thi Tra Mi Bui
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan.,Department of Veterinary and Animal Science, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Takuya Wakai
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Hiroaki Funahashi
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
12
|
Bui TMT, Nguyễn KX, Karata A, Ferré P, Trần MT, Wakai T, Funahashi H. Presence of vascular endothelial growth factor during the first half of IVM improves the meiotic and developmental competence of porcine oocytes from small follicles. Reprod Fertil Dev 2018; 29:1902-1909. [PMID: 27938625 DOI: 10.1071/rd16321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 10/20/2016] [Indexed: 12/27/2022] Open
Abstract
The aim of the present study was to investigate the effect of vascular endothelial growth factor (VEGF) on the meiotic and developmental competence of porcine oocytes from small follicles (SF; 0.5-3mm diameter). When cumulus-oocyte complexes (COCs) from medium-sized follicles (MF; 3-6mm diameter) and SF were cultured for IVM, the maturation rates were significantly higher for oocytes from MF than SF. Concentrations of VEGF in the medium were significantly higher for COCs cultured from MF than SF. When COCs from SF were exposed to 200ngmL-1 VEGF during the first 20h of IVM, the maturation rate improved significantly and was similar to that of oocytes derived from MF. The fertilisability of oocytes was also significantly higher than that of VEGF-free SF controls. Following parthenogenetic activation, the blastocyst formation rate improved significantly when SF COC culture was supplemented with 200ngmL-1 VEGF, with the rate similar to that of oocytes from MF. The results of the present study indicate that VEGF markedly improves the meiotic and developmental competence of oocytes derived from SF, especially at a concentration of 200ngmL-1 during the first 20h of IVM.
Collapse
Affiliation(s)
- Tra M T Bui
- Department of Animal Science, Graduate School of Environmental and Life Sciences, Okayama University, Tsushima-Naka, Kita-Ku, Okayama 700-8530, Japan
| | - Khánh X Nguyễn
- Department of Animal Science, Graduate School of Environmental and Life Sciences, Okayama University, Tsushima-Naka, Kita-Ku, Okayama 700-8530, Japan
| | - Asako Karata
- Department of Animal Science, Graduate School of Environmental and Life Sciences, Okayama University, Tsushima-Naka, Kita-Ku, Okayama 700-8530, Japan
| | - Pilar Ferré
- Department of Animal Science, Graduate School of Environmental and Life Sciences, Okayama University, Tsushima-Naka, Kita-Ku, Okayama 700-8530, Japan
| | - Minh T Trần
- Department of Animal Science, Graduate School of Environmental and Life Sciences, Okayama University, Tsushima-Naka, Kita-Ku, Okayama 700-8530, Japan
| | - Takuya Wakai
- Department of Animal Science, Graduate School of Environmental and Life Sciences, Okayama University, Tsushima-Naka, Kita-Ku, Okayama 700-8530, Japan
| | - Hiroaki Funahashi
- Department of Animal Science, Graduate School of Environmental and Life Sciences, Okayama University, Tsushima-Naka, Kita-Ku, Okayama 700-8530, Japan
| |
Collapse
|
13
|
Zak LJ, Gaustad AH, Bolarin A, Broekhuijse MLWJ, Walling GA, Knol EF. Genetic control of complex traits, with a focus on reproduction in pigs. Mol Reprod Dev 2017; 84:1004-1011. [DOI: 10.1002/mrd.22875] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 08/07/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Louisa J. Zak
- Topigs Norsvin Research Center; Beuningen The Netherlands
| | | | | | | | - Grant A. Walling
- JSR Genetics; Southburn; Driffield East Yorkshire United Kingdom
| | - Egbert F. Knol
- Topigs Norsvin Research Center; Beuningen The Netherlands
| |
Collapse
|
14
|
Okudaira Y, Wakai T, Funahashi H. Levels of cyclic-AMP and cyclic-GMP in porcine oocyte-cumulus complexes and cumulus-free oocytes derived from small and middle follicles during the first 24-hour period of in vitro maturation. J Reprod Dev 2017; 63:191-197. [PMID: 28228615 PMCID: PMC5401813 DOI: 10.1262/jrd.2016-156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/27/2017] [Indexed: 01/15/2023] Open
Abstract
The objective of this study was to compare the cAMP and cGMP levels in cumulus-oocyte complexes (COCs) derived from the middle follicles (MFs, 3-6 mm in diameter) and small follicles (SFs, 1-3 mm in diameter) of pre-pubertal gilts during the first 24-h period of maturation in vitro (IVM). Both cAMP and cGMP levels in MF- and SF-derived oocytes did not change during this period. Although the cAMP levels increased in the COCs at 10 and 20 h after the start of IVM, the levels of cAMP were significantly higher in MF-derived COCs than in SF-derived COCs at 20 h after the start of IVM. On the other hand, the cGMP levels in COCs decreased to basal levels between 10 and 20 h after the start of the IVM, whereas cGMP levels were lower in SF-derived COCs than in MF-derived COCs during the first 10 h. The number of cumulus cells was larger in the MF-derived COCs than in the SF-derived COCs during the first 20-h period of IVM. The estimated cAMP level per cumulus cell at 10 h after the start of the IVM was higher in SF-derived COCs than in MF-derived COCs, whereas the estimated cGMP level per cumulus cell was no different between MF- and SF-derived COCs. From these results, we conclude that cAMP and cGMP levels in COCs, but not in oocytes, drastically change during the first 20-h period of IVM, and that both cAMP and cGMP levels significantly differ between MF- and SF-derived COCs.
Collapse
Affiliation(s)
- Yuichi Okudaira
- Department of Animal Science, Graduate School of Environment and Life Science, Okayama University, Okayama 700-8530 Japan
| | - Takuya Wakai
- Department of Animal Science, Graduate School of Environment and Life Science, Okayama University, Okayama 700-8530 Japan
| | - Hiroaki Funahashi
- Department of Animal Science, Graduate School of Environment and Life Science, Okayama University, Okayama 700-8530 Japan
| |
Collapse
|
15
|
Matsunaga R, Funahashi H. Supplementation with cumulus cell masses improves the in vitro meiotic competence of porcine cumulus-oocytes complexes derived from small follicles. Reprod Domest Anim 2017; 52:672-679. [PMID: 28370425 DOI: 10.1111/rda.12967] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/05/2017] [Indexed: 11/24/2022]
Abstract
The present study was conducted to examine the supplemented effect of cumulus cell masses (CCMs) derived from middle follicle (MF; 3-6 mm diameter) on the morphology and the meiotic or developmental competence of oocytes from small follicles (SF; 1-2 mm diameter). The number of cumulus cells surrounding oocytes just after collection was also lower in cumulus-oocyte complexes (COCs) from SF than MF. The ooplasmic diameter of oocytes was significantly smaller in SF-derived oocytes than MF-derived ones before and after in vitro maturation (IVM), whereas the diameter significantly increased during the culture. Co-culture of SF-derived COCs with MF-derived CCMs during IVM significantly improved the meiotic competence of the oocytes to the metaphase-II stage. Furthermore, the ooplasmic diameter of SF-derived COCs during IVM was increased to the similar size of MF-derived those in the presence of MF-derived CCMs. The abilities of oocytes to be penetrated, to form male pronuclear formation and to cleave or develop to the blastocyst stage were not affected by the co-culture with CCMs. Electrophoretic analysis of CCM secretions clearly showed the presence of more protein(s) approximately 27.6 kDa in the conditioned medium when supplemented with MF-derived CCMs. In conclusion, we demonstrate that supplementation with MF-derived CCMs improves the ooplasmic diameter and meiotic competence of SF-derived oocytes.
Collapse
Affiliation(s)
- R Matsunaga
- Department of Animal Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - H Funahashi
- Department of Animal Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
16
|
Chen Z, Zuo X, Li H, Hong R, Ding B, Liu C, Gao D, Shang H, Cao Z, Huang W, Zhang X, Zhang Y. Effects of melatonin on maturation, histone acetylation, autophagy of porcine oocytes and subsequent embryonic development. Anim Sci J 2017; 88:1298-1310. [PMID: 28349625 DOI: 10.1111/asj.12779] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 12/12/2022]
Abstract
Melatonin (MLT) is an endogenous hormone with roles in animal germ cell development. However, the effect of MLT on porcine oocyte maturation and its underlying mechanisms remain largely unknown. Here, we investigated the effects of exogenous MLT on oocyte maturation, histone acetylation, autophagy and subsequent embryonic development. We found that 1 nmol/L MLT supplemented in maturation medium was the optimal concentration to promote porcine oocyte maturation and subsequent developmental competence and quality of parthenogenetic embryos. Interestingly, the beneficial effects of 1 nmol/L MLT treatment on porcine oocyte maturation and embryo development were mainly attributed to the first half period of in vitro maturation. Simultaneously, MLT treatment could also improve maturation of small follicle-derived oocytes, morphologically poor (cumulus cell layer ≤1) and even artificially denuded oocytes and their subsequent embryo development. Furthermore, MLT treatment not only could decrease the levels of H3K27ac and H4K16ac in metaphase II (MII) oocytes, but also could increase the expression abundances of genes associated with cumulus cell expansion, meiotic maturation, histone acetylation and autophagy in cumulus cells or MII oocytes. These results indicate that MLT treatment can facilitate porcine oocyte maturation and subsequent embryonic development probably, through improvements in histone acetylation and autophagy in oocytes.
Collapse
Affiliation(s)
- Zhen Chen
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui province, China
| | - Xiaoyuan Zuo
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui province, China
| | - Hui Li
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui province, China
| | - Renyun Hong
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui province, China
| | - Biao Ding
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui province, China
| | - Chengxue Liu
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui province, China
| | - Di Gao
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui province, China
| | - Hui Shang
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui province, China
| | - Zubing Cao
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui province, China
| | - Weiping Huang
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui province, China
| | - Xiaorong Zhang
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui province, China
| | - Yunhai Zhang
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui province, China
| |
Collapse
|
17
|
Lee H, Elahi F, Lee J, Lee ST, Hyun SH, Lee E. Supplement of cilostamide in growth medium improves oocyte maturation and developmental competence of embryos derived from small antral follicles in pigs. Theriogenology 2017; 91:1-8. [DOI: 10.1016/j.theriogenology.2016.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 11/09/2016] [Accepted: 12/13/2016] [Indexed: 11/28/2022]
|
18
|
Arias-Álvarez M, García-García RM, López-Tello J, Rebollar PG, Gutiérrez-Adán A, Lorenzo PL. In vivo and in vitro maturation of rabbit oocytes differently affects the gene expression profile, mitochondrial distribution, apoptosis and early embryo development. Reprod Fertil Dev 2017; 29:1667-1679. [DOI: 10.1071/rd15553] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 08/16/2016] [Indexed: 01/05/2023] Open
Abstract
In vivo-matured cumulus–oocyte complexes are valuable models in which to assess potential biomarkers of rabbit oocyte quality that contribute to enhanced IVM systems. In the present study we compared some gene markers of oocytes and cumulus cells (CCs) from immature, in vivo-matured and IVM oocytes. Moreover, apoptosis in CCs, nuclear maturation, mitochondrial reallocation and the developmental potential of oocytes after IVF were assessed. In relation to cumulus expansion, gene expression of gap junction protein, alpha 1, 43 kDa (Gja1) and prostaglandin-endoperoxide synthase 2 (Ptgs2) was significantly lower in CCs after in vivo maturation than IVM. In addition, there were differences in gene expression after in vivo maturation versus IVM in both oocytes and CCs for genes related to cell cycle regulation and apoptosis (V-Akt murine thymoma viral oncogene homologue 1 (Akt1), tumour protein 53 (Tp53), caspase 3, apoptosis-related cysteine protease (Casp3)), oxidative response (superoxide dismutase 2, mitochondrial (Sod2)) and metabolism (glucose-6-phosphate dehydrogenase (G6pd), glyceraldehyde-3-phosphate dehydrogenase (Gapdh)). In vivo-matured CCs had a lower apoptosis rate than IVM and immature CCs. Meiotic progression, mitochondrial migration to the periphery and developmental competence were higher for in vivo-matured than IVM oocytes. In conclusion, differences in oocyte developmental capacity after IVM or in vivo maturation are accompanied by significant changes in transcript abundance in oocytes and their surrounding CCs, meiotic rate, mitochondrial distribution and apoptotic index. Some of the genes investigated, such as Gja1, could be potential biomarkers for oocyte developmental competence in the rabbit model, helping improve in vitro culture systems in these species.
Collapse
|
19
|
Maternal effect gene expression in porcine metaphase II oocytes and embryos in vitro: effect of epidermal growth factor, interleukin-1β and leukemia inhibitory factor. ZYGOTE 2016; 25:120-130. [PMID: 28007046 DOI: 10.1017/s0967199416000332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Maternal effect genes (MEG) play a crucial role in early embryogenesis. In vitro culture conditions may affect MEG expression in porcine oocytes and embryos. We investigated whether in vitro culture medium supplementation with epidermal growth factor (EGF), IL-1β or LIF (leukemia inhibitory factor) affects the mRNA level of ZAR-1 (zygote arrest 1), NPM2 (nucleoplasmin 2) and DPPA3 (developmental associated protein 3) in porcine MII oocytes and embryos. Cumulus-oocyte complexes (COCs) were matured in NCSU-37 medium (control) or in NCSU-37 with EGF 10 ng/ml, IL-1β 10 ng/ml or LIF 50 ng/ml. After maturation for 44-46 h, MII oocytes were preserved for the analysis of MEG mRNA levels (experiment 1). In experiment 2, COCs were fertilized, and the presumptive zygotes were cultured in the same groups. Then, 2-, 4-, 8-cell embryos, morulae and blastocysts were collected for the analysis of MEG mRNA levels. LIF addition to the maturation medium increased MII oocyte numbers (P < 0.05), while EGF and IL-1β did not affect oocyte maturation. Medium supplementation with EGF resulted in lower DPPA3 mRNA levels in MII oocytes and in 2- and 4-cell embryos versus control embryos (P < 0.05). LIF treatment increased DPPA3 mRNA levels in morulae and blastocysts (P < 0.05). Culture with EGF and IL-1β decreased ZAR-1 and NPM2 mRNA levels in 2-cell embryos (P < 0.05). The inclusion of EGF or IL-1β in the porcine in vitro production system influences ZAR-1, NPM2 and DPPA3 mRNA in MII oocytes and embryos but not beyond the 4-cell stage. LIF stimulates oocyte maturation and affects DPPA3 mRNA in porcine morulae and blastocysts in vitro.
Collapse
|
20
|
Lee Y, Lee H, Park B, Elahi F, Lee J, Lee ST, Park CK, Hyun SH, Lee E. Alpha-linolenic acid treatment during oocyte maturation enhances embryonic development by influencing mitogen-activated protein kinase activity and intraoocyte glutathione content in pigs1. J Anim Sci 2016; 94:3255-3263. [DOI: 10.2527/jas.2016-0384] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Y. Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - H. Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - B. Park
- Laboratory of Theriogenology, College of Veterinary Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - F. Elahi
- Laboratory of Theriogenology, College of Veterinary Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - J. Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - S. T. Lee
- Division of Applied Animal Science, College of Animal Life Science, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - C. K. Park
- Division of Applied Animal Science, College of Animal Life Science, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - S. H. Hyun
- Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - E. Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
- Institute of Veterinary Science, Kangwon National University, Chuncheon 200-701, Republic of Korea
| |
Collapse
|
21
|
Zygote arrest 1, nucleoplasmin 2, and developmentally associated protein 3 mRNA profiles throughout porcine embryo development in vitro. Theriogenology 2016; 86:2254-2262. [PMID: 27566850 DOI: 10.1016/j.theriogenology.2016.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/15/2016] [Accepted: 07/15/2016] [Indexed: 11/23/2022]
Abstract
Maternal effect genes (MEGs) are expressed in oocytes and embryos and play an important role in activation of the embryonic genome. An abnormality in the expression of these genes may lead to arrest of embryonic cleavage or to altered transcription of factors responsible for further embryonic development. In vitro-produced porcine embryos have a lower developmental potential than embryos produced in vivo. We hypothesized that in vitro embryo culture conditions have an effect on the expression of MEGs at various developmental stages, which may affect their developmental potential. Here, using real-time polymerase chain reaction, we examined mRNA profiles of the MEGs, zygote arrest 1 (ZAR-1), nucleoplasmin 2 (NPM2), and developmentally associated pluripotency protein 3 (DPPA3), in porcine oocytes and embryos produced in vitro and in vivo. Further, we evaluated the effect of the combined addition of EGF, interleukin 1β, and leukemia inhibitory factor to the porcine in vitro embryo production system on mRNA profiles of selected MEGs. Finally, we studied localization of the MEG protein products in in vitro-obtained oocytes and embryos using confocal microscopy. We found that the ZAR-1 mRNA profile differed throughout in vitro and in vivo embryo development. In the embryos produced in vitro, the decrease in ZAR-1 mRNA levels was observed at the 2-cell stage, whereas in in vivo embryos, ZAR-1 mRNA levels declined significantly starting at the 4-cell stage (P < 0.05). In vitro culture conditions affected transiently also DPPA3 mRNA levels at the 4-cell stage (P < 0.05). There was no difference in the NPM2 mRNA profile during in vitro and in vivo embryo development. The ZAR-1 and DPPA3 proteins were localized in the cytoplasm of the oocytes and embryos, whereas the NPM2 protein was found both in the cytoplasm and in the nucleus. All proteins were expressed until blastocyst stage. The addition of EGF and cytokines to the culture medium decreased DPPA3 mRNA levels in 8-cell embryos (P < 0.05). This study indicated that IVC conditions affect ZAR-1 mRNA levels before the 4-cell stage, which may disturb the activation of the embryonic genome in pigs. The expression of the proteins after the 4-cell to 8-cell transition indicates that these factors play a role beyond activation of the embryonic genome. Supplementation of the culture media with EGF and cytokines affects DPPA3 mRNA levels after maternal to embryonic transition.
Collapse
|
22
|
Miao N, Wang X, Hou Y, Feng Y, Gong Y. Identification of male-biased microRNA-107 as a direct regulator for nuclear receptor subfamily 5 group A member 1 based on sexually dimorphic microRNA expression profiling from chicken embryonic gonads. Mol Cell Endocrinol 2016; 429:29-40. [PMID: 27036932 DOI: 10.1016/j.mce.2016.03.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/08/2016] [Accepted: 03/27/2016] [Indexed: 12/15/2022]
Abstract
Several studies indicate that sexual dimorphic microRNAs (miRNAs) in chicken gonads are likely to have important roles in sexual development, but a more global understanding of the roles of miRNAs in sexual differentiation is still needed. To this end, we performed miRNA expression profiling in chicken gonads at embryonic day 5.5 (E5.5). Among the sex-biased miRNAs validated by qRT-PCR, twelve male-biased and six female-biased miRNAs were consistent with the sequencing results. Bioinformatics analysis revealed that some sex-biased miRNAs were potentially involved in gonadal development. Further functional analysis found that over-expression of miR-107 directly inhibited nuclear receptor subfamily 5 group A member 1 (NR5a1), and its downstream cytochrome P450 family 19 subfamily A, polypeptide 1 (CYP19A1). However, anti-Mullerian hormone (AMH) was not directly or indirectly regulated by miR-107. Overall results indicate that miR-107 may specifically mediate avian ovary-development by post-transcriptional regulation of NR5a1 and CYP19A1 in estrogen signaling pathways.
Collapse
Affiliation(s)
- Nan Miao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xin Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yue Hou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yanping Feng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Yanzhang Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
23
|
Ferré P, Bui TMT, Wakai T, Funahashi H. Effect of removing cumulus cells from porcine cumulus-oocyte complexes derived from small and medium follicles during IVM on the apoptotic status and meiotic progression of the oocytes. Theriogenology 2016; 86:1705-10. [PMID: 27329157 DOI: 10.1016/j.theriogenology.2016.05.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/11/2016] [Accepted: 05/20/2016] [Indexed: 12/21/2022]
Abstract
The present study was undertaken to examine the apoptotic status and meiotic progression of oocytes from small follicle (SF; 0.5-2 mm in diameter) and medium follicle (MF; 3-6 mm in diameter) when the oocytes were denuded before, during, and after IVM. Cumulus-oocyte complexes (COCs) were collected from SF or MF of prepubertal gilt ovaries. Before or 20 hours after the start of IVM culture, some oocytes were denuded and cultured for IVM. At the end of IVM, apoptotic status and meiotic progression of the oocytes were compared with oocytes matured in the presence of cumulus cells (CCs) by Annexin-V/PI assay and 4',6-Diamidino-2-phenylindole staining. Apoptotic status of the oocytes was only affected by time when the oocytes were denuded. In both oocytes from SF and MF, although the incidence of early and late apoptotic oocytes was significantly higher when the CCs were removed before IVM, the rate was significantly lower when CCs were removed 20 and 44 hours after the start of IVM. The incidence of mature oocytes was significantly affected by both the origin of COCs and time when oocytes were denuded from the COCs. Although the percentage of mature oocytes was higher in MF than SF, maturation rates were significantly higher when oocytes were denuded 20 hours, as compared with 0 and 44 hours after the start of IVM. However, the percentage of mature oocytes with a morphologically normal spindle was significantly higher when oocytes were denuded 44 hours, rather than 22 hours of IVM. In conclusion, removing CCs 20 hours after the start of IVM seems to promote meiotic progression of the oocytes to the metaphase-II stage even when the COCs were collected from SF, although factor(s) from or communication with CCs during IVM may need to obtain a morphologically normal spindle in mature oocytes.
Collapse
Affiliation(s)
- Pilar Ferré
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Tra Mi Thi Bui
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Takuya Wakai
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Hiroaki Funahashi
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan.
| |
Collapse
|
24
|
An essential role for the intra-oocyte MAPK activity in the NSN-to-SN transition of germinal vesicle chromatin configuration in porcine oocytes. Sci Rep 2016; 6:23555. [PMID: 27009903 PMCID: PMC4806380 DOI: 10.1038/srep23555] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/08/2016] [Indexed: 02/07/2023] Open
Abstract
The mechanisms for the transition from non-surrounded nucleolus (NSN) to surrounded nucleolus (SN) chromatin configuration during oocyte growth/maturation are unclear. By manipulating enzyme activities and measuring important molecules using small-follicle pig oocytes with a high proportion of NSN configuration and an extended germinal vesicle stage in vitro, this study has the first time up-to-date established the essential role for intra-oocyte mitogen-activated protein kinase (MAPK) in the NSN-to-SN transition. Within the oocyte in 1–2 mm follicles, a cAMP decline activates MAPK, which prevents the NSN-to-SN transition by activating nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) while inhibiting histone deacetylase (HDAC). In cumulus cells of 1–2 mm follicles, a lower level of estradiol and oocyte-derived paracrine factor (ODPF) reduces natriuretic peptide receptor 2 (NPR2) while enhancing FSH and cAMP actions. FSH elevates cAMP levels, which decreases NPR2 while activating MAPK. MAPK closes the gap junctions, which, together with the NPR2 decrease, reduces cyclic guanosine monophosphate (cGMP) delivery leading to the cAMP decline within oocytes. In 3–6 mm follicles, a higher level of estradiol and ODPF and a FSH shortage initiate a reversion of the above events leading to MAPK inactivation and NSN-to-SN transition within oocytes.
Collapse
|
25
|
Lee J, Park JI, Lee GS, Choi JH, Lee ST, Park CK, Kim DY, Hyun SH, Lee E. Colcemid treatment during oocyte maturation improves preimplantation development of cloned pig embryos by influencing meiotic progression and cytoplasmic maturation. Mol Reprod Dev 2015; 82:489-97. [DOI: 10.1002/mrd.22498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 04/28/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Joohyeong Lee
- College of Veterinary Medicine; Kangwon National University; Chuncheon Korea
| | - Jong-Im Park
- College of Veterinary Medicine; Konkuk University; Seoul Korea
| | - Geun-Shik Lee
- College of Veterinary Medicine; Kangwon National University; Chuncheon Korea
- Institute of Veterinary Science; Kangwon National University; Chuncheon Korea
| | - Jung Hoon Choi
- College of Veterinary Medicine; Kangwon National University; Chuncheon Korea
- Institute of Veterinary Science; Kangwon National University; Chuncheon Korea
| | - Seung Tae Lee
- Division of Applied Animal Science, College of Animal Life Science; Kangwon National University; Chuncheon Korea
| | - Choon-Keun Park
- Division of Applied Animal Science, College of Animal Life Science; Kangwon National University; Chuncheon Korea
| | - Dae Young Kim
- Department of Life Science, College of BioNano Technology; Gachon University; Incheon Korea
| | - Sang-Hwan Hyun
- College of Veterinary Medicine; Chungbuk National University; Cheongju Korea
| | - Eunsong Lee
- College of Veterinary Medicine; Kangwon National University; Chuncheon Korea
- Institute of Veterinary Science; Kangwon National University; Chuncheon Korea
| |
Collapse
|
26
|
De Bem THC, Adona PR, Bressan FF, Mesquita LG, Chiaratti MR, Meirelles FV, Leal CLV. The Influence of Morphology, Follicle Size and Bcl-2 and Bax Transcripts on the Developmental Competence of Bovine Oocytes. Reprod Domest Anim 2014; 49:576-583. [DOI: 10.1111/rda.12325] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 04/03/2014] [Indexed: 11/28/2022]
Affiliation(s)
- THC De Bem
- Departamento de Ciências; Faculdade de Zootecnia e Engenharia de Alimentos Básicas; Universidade de São Paulo; Pirassununga Brazil
- Departamento de Genética; Faculdade de Medicina de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto Brazil
| | - PR Adona
- Universidade Norte do Paraná; Londrina Brazil
- Agropecuária Laffranchi; Tamarana Brazil
| | - FF Bressan
- Departamento de Ciências; Faculdade de Zootecnia e Engenharia de Alimentos Básicas; Universidade de São Paulo; Pirassununga Brazil
| | - LG Mesquita
- Departamento de Ciências; Faculdade de Zootecnia e Engenharia de Alimentos Básicas; Universidade de São Paulo; Pirassununga Brazil
| | - MR Chiaratti
- Departamento de Genética e Evolução; Universidade Federal de São Carlos; São Carlos Brazil
| | - FV Meirelles
- Departamento de Ciências; Faculdade de Zootecnia e Engenharia de Alimentos Básicas; Universidade de São Paulo; Pirassununga Brazil
| | - CLV Leal
- Departamento de Ciências; Faculdade de Zootecnia e Engenharia de Alimentos Básicas; Universidade de São Paulo; Pirassununga Brazil
| |
Collapse
|