1
|
Xie P, Wang L, Zhu J, Liu Y, Wei M, Gong D, Liu T. Effects of different stocking densities on the development of reproductive and immune functions in young breeder pigeons during the rearing period. Br Poult Sci 2024; 65:213-222. [PMID: 38334444 DOI: 10.1080/00071668.2024.2308273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/05/2023] [Indexed: 02/10/2024]
Abstract
1. Stocking density (SD) is closely related to animal performance. This experiment was designed to evaluate the development of reproductive and immune functions of young pigeons under different SDs.2. A total of 288 (half male and half female) 40-day-old pigeons (body weight 400 ± 15 g) were allocated into four groups: High stocking density (HSD; 0.308 m3/bird), standard stocking density (SD; 0.616 m3/bird), and low stocking density (LSD; 1.232 m3/bird) and a caged (control; 0.04125 m3/bird). Every group had six replicates of the same sex.3. The results showed that caged male pigeons had the highest testis index, testosterone content, and gene expression of the androgen receptor gene. LSD treatment induced the highest concentrations of oestradiol, progesterone and mRNA levels of reproductive hormone receptor genes in female pigeons. In male pigeons, the spleen index (organ weight calculated as a percentage of total body weight) showed a peak level (0.09 ± 0.020) in the LSD group, and the thymus index peaked (0.23 ± 0.039) in SD group. However, the index for ovary, spleen, thymus and bursa of Fabricius in female pigeons showed no significant changes among different groups.4. The IL-1β, IL-8, IFN-γ, TGF-β and toll-like receptor 2 (TLR-2) mRNA levels reached their maximum values in both male and female pigeon spleens in the LSD group.5. Young male pigeons housed in cages showed increased testicular development while low stocking density increased the development of reproductive function in young female pigeons. A larger activity space could help enhance the immune function of both male and female pigeons.
Collapse
Affiliation(s)
- P Xie
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huaian, China
| | - L Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - J Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Y Liu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huaian, China
| | - M Wei
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huaian, China
| | - D Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - T Liu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huaian, China
| |
Collapse
|
2
|
Estermann MA, Major AT, Smith CA. Genetic Regulation of Avian Testis Development. Genes (Basel) 2021; 12:1459. [PMID: 34573441 PMCID: PMC8470383 DOI: 10.3390/genes12091459] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 11/30/2022] Open
Abstract
As in other vertebrates, avian testes are the site of spermatogenesis and androgen production. The paired testes of birds differentiate during embryogenesis, first marked by the development of pre-Sertoli cells in the gonadal primordium and their condensation into seminiferous cords. Germ cells become enclosed in these cords and enter mitotic arrest, while steroidogenic Leydig cells subsequently differentiate around the cords. This review describes our current understanding of avian testis development at the cell biology and genetic levels. Most of this knowledge has come from studies on the chicken embryo, though other species are increasingly being examined. In chicken, testis development is governed by the Z-chromosome-linked DMRT1 gene, which directly or indirectly activates the male factors, HEMGN, SOX9 and AMH. Recent single cell RNA-seq has defined cell lineage specification during chicken testis development, while comparative studies point to deep conservation of avian testis formation. Lastly, we identify areas of future research on the genetics of avian testis development.
Collapse
Affiliation(s)
| | | | - Craig Allen Smith
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (M.A.E.); (A.T.M.)
| |
Collapse
|
3
|
Hassani Moghaddam M, Eskandari N, Nikzad H, Miryounesi M, Karimian M, Amini Mahabadi J, Ali Atlasi M. Primordial germ cells can be differentiated by retinoic acid and progesterone induction from embryonic stem cells. J Biosci 2021. [DOI: 10.1007/s12038-021-00210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
4
|
Grzegorzewska AK, Grot E, Sechman A. Sodium Fluoride In Vitro Treatment Affects the Expression of Gonadotropin and Steroid Hormone Receptors in Chicken Embryonic Gonads. Animals (Basel) 2021; 11:ani11040943. [PMID: 33810503 PMCID: PMC8066272 DOI: 10.3390/ani11040943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Effects of in vitro sodium fluoride (NaF) treatment on the mRNA expression of luteinizing hormone receptor (LHR), follicle-stimulating hormone receptor (FSHR), estrogen receptors (ESR1 and ESR2), progesterone receptor (PGR), and the immunolocalization of PGRs were examined in gonads of 14-day-old chicken embryos. In the ovary, the NaF treatment significantly increased mRNA levels of all investigated receptors. In the testes, the lowest applied dose of NaF (1.7 mM) significantly decreased the expression of FSHR, ESR1, ESR2, and PGR. Alternatively, the higher NaF dose (7.1 mM) elevated PGR mRNA level in the male gonad. Immunohistochemical analysis revealed that the NaF exposure increased PGR expression in the ovarian cortex, while it decreased its expression in the testes. Collectively, these data indicate that: (i) NaF may disturb the chicken embryonic development, and (ii) different mechanisms of this toxicant action exist within the female and male gonads. Abstract Sodium fluoride (NaF), in addition to preventing dental decay may negatively affect the body. The aim of this study was to examine the effect of a 6 h in vitro treatment of gonads isolated from 14-day-old chicken embryos with NaF at doses of 1.7 (D1), 3.5 (D2), 7.1 (D3), and 14.2 mM (D4). The mRNA expression of luteinizing hormone receptor (LHR), follicle-stimulating hormone receptor (FSHR), estrogen receptors (ESR1 and ESR2), progesterone receptor (PGR), and the immunolocalization of progesterone receptors were examined in the tissue. In the ovary, the expression of FSHR and LHR increased following the NaF treatment. In the case of FSHR the highest stimulatory effect was noticed in the D2 group, while the expression of LHR increased in a dose-dependent manner. A gradual increase in ESR1 and PGR mRNA levels was also observed in the ovary following the NaF treatment, but only up to the D3 dose of NaF. The highest ESR2 level was also found in the D3 group. In the testes, the lowest dose of NaF significantly decreased the expression of FSHR, ESR1, ESR2, and PGR. On the other hand, an increase in PGR expression was observed in the D3 group. The expression of LHR in the testes was not affected by the NaF treatment. Immunohistochemical analysis showed that NaF exposure increased progesterone receptor expression in the ovarian cortex, while it decreased its expression in the testes. These results reveal that NaF may disturb the chicken embryonic development and different mechanisms of this toxicant action exist within the females and males.
Collapse
|
5
|
Mahabadi JA, Tameh AA, Talaei SA, Karimian M, Rahiminia T, Enderami SE, Gheibi Hayat SM, Nikzad H. Retinoic acid and/or progesterone differentiate mouse induced pluripotent stem cells into male germ cells in vitro. J Cell Biochem 2019; 121:2159-2169. [PMID: 31646671 DOI: 10.1002/jcb.29439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/08/2019] [Indexed: 12/11/2022]
Abstract
Numerous reagents were employed for differentiating induced pluripotent stem cells (iPSCs) into male germ cells; however, the induction procedure was ineffective. The aim of this study was to improve the in vitro differentiation of mice iPSCs (miPSCs) into male germ cells with retinoic acid (RA) and progesterone (P). miPSCs were differentiated to embryoid bodies (EBs) in suspension with RA with or without progesterone for 0, 4, and 7 days. Then, the expression of certain genes at different stages of male germ cell development including Ddx4 (pre meiosis), Stra8 (meiosis), AKAP3 (post meiosis), and Mvh protein was examined in RNA and/or protein levels by real-time polymerase chain reaction or flow cytometry, respectively. The Stra8 gene expression increased in the RA groups on all days. But, expression of this gene declined in RA + P groups. In addition, an increased expression of Ddx4 gene was observed on day 0 in the P group. Also, a significant upregulation was observed in the expression of AKAP3 gene in the RA + P group on days 0 and 4. However, gene expression decreased in P and RA groups on day 7. The expression of Mvh protein significantly increased in the RA group on day 7. The Mvh expression was also enhanced in the P group on day 4, but it decreased on day 7, while this protein upregulated on day 0 and 7 in the RA + P group. The miPSCs have the capacity for in vitro differentiation into male germ cells by RA and/or progesterone. However, the effects of these inducers depend on the type of combination and an effective time.
Collapse
Affiliation(s)
- Javad Amini Mahabadi
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Abolfazl Aazami Tameh
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Mohammad Karimian
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Tahereh Rahiminia
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Ehsan Enderami
- Department of Medical Biotechnology, Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mohammad Gheibi Hayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Nikzad
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
6
|
Li J, Luo W, Huang T, Gong Y. Growth differentiation factor 9 promotes follicle-stimulating hormone-induced progesterone production in chicken follicular granulosa cells. Gen Comp Endocrinol 2019; 276:69-76. [PMID: 30851298 DOI: 10.1016/j.ygcen.2019.03.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 01/25/2023]
Abstract
The function of oocyte-derived growth differentiation factor 9 (GDF9) in ovarian follicles has thus far been poorly defined in avian species compared with the defined function in mammals. Our aim here is to investigate the effects of GDF9 on steroidogenesis and on chicken ovarian granulosa cell (GC) mitosis. Primary GCs from both prehierarchical (6-8 mm in diameter, phGCs) and preovulatory follicles (F1-F5, poGCs) were cultured in the presence or absence of the GDF9 protein. The progesterone (P4) levels in the culture medium were then measured by radioimmunoassay (RIA), and the expression levels of steroidogenesis genes were detected by quantitative PCR. We found that GDF9 alone showed no significant effect on the P4 levels by regulating the expression of steroidogenesis genes, such as STAR, CYP11A1 and HSD3B. Further experiments indicated that GDF9 promoted follicle-stimulating hormone (FSH)-induced P4 production and STAR expression. GDF9 also rescued the FSH-induced decrease of FSH receptor (FSHR) expression but had no effect on the forskolin-induced P4, STAR and forskolin-inhibited FSHR expression levels, suggesting that GDF9 might achieve its regulatory role of P4 by enhancing FSHR and STAR expression. In addition, GDF9 also promoted GC cell cycle progression, regulated the gene transcription of related genes, potentiated DNA replication and inhibited apoptosis. Interestingly, these effects differed between the phGCs and the poGCs. To our knowledge, this is the first report that illustrates the function of GDF9 on chicken GCs and the effects on ovarian steroidogenesis. Our findings highlight the regulation of central oocytes on the surrounding granulosa cells and emphasize the interaction between paracrine signals and endocrine hormones on ovarian progesterone production; these findings contribute to the understanding of the development of avian ovarian follicles.
Collapse
Affiliation(s)
- Jinqiu Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Wei Luo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Tao Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yanzhang Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|
7
|
Eskandari N, Hassani Moghaddam M, Atlasi MA, Amini Mahabadi J, Taherian A, Nikzad H. The combination of retinoic acid and estrogen can increase germ cells genes expression in mouse embryonic stem cells derived primordial germ cells. Biologicals 2018; 56:39-44. [DOI: 10.1016/j.biologicals.2018.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/16/2018] [Accepted: 10/01/2018] [Indexed: 12/16/2022] Open
|
8
|
Ji M, Tang S, Pei W, Ning M, Ma Y, Li X, Guan W. Generation of haploid spermatids from chicken embryonal primordial germ cells. Int J Mol Med 2018; 42:53-60. [PMID: 29620249 PMCID: PMC5979930 DOI: 10.3892/ijmm.2018.3602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 01/10/2018] [Indexed: 11/21/2022] Open
Abstract
In vitro production of functional spermatids has special significance in the research of spermatogenesis and the treatment of male infertility. Primordial germ cells (PGCs) are the precursors of oocyte and sperm, which generate the totipotent cells. Studies have shown that PGCs have the potential ability to develop meiotic spermatids in vitro. Here we have shown that retinoic acid (RA) leads to PGC differentiation, and SCF can improve the efficiency of induction. We indicate an efficient approach to produce haploid spermatids from chicken PGCs in the presence of RA and stem cell factor (SCF). Real-time RT-PCR assays showed that RA and SCF induced a remarkable increase in expression of SYCP1, ACR, BOULE and DCM1 of meiotic germ cells and haploid germ cells, respectively. DNA content assays revealed that RA and SCF induced a remarkable increase of haploid cells. This study provides a theoretical basis and a great animal model for spermatogenesis study.
Collapse
Affiliation(s)
- Meng Ji
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Shuang Tang
- Liaoning Provincial Key Laboratory for Agricultural Biotechnology, College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, Liaoning 110866, P.R. China
| | - Wenhua Pei
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Mingming Ning
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Yuehui Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Xiangchen Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Weijun Guan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| |
Collapse
|
9
|
Valadez-Cosmes P, Vázquez-Martínez ER, Cerbón M, Camacho-Arroyo I. Membrane progesterone receptors in reproduction and cancer. Mol Cell Endocrinol 2016; 434:166-75. [PMID: 27368976 DOI: 10.1016/j.mce.2016.06.027] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/15/2016] [Accepted: 06/27/2016] [Indexed: 12/11/2022]
Abstract
Progesterone is a sexual steroid hormone that has a critical role in reproductive processes in males and females of several species, including humans. Furthermore, progesterone has been associated with pathological diseases such as breast, gynecological and brain cancer, regulating cell proliferation, apoptosis, and metastasis. In the past, progesterone actions were thought to be only mediated by its intracellular receptor (PR). However, recent evidence has demonstrated that membrane progesterone receptors (mPRs) mediate most of the non-classical progesterone actions. The role of the different mPRs subtypes in progesterone effects in reproduction and cancer is an emerging and exciting research area. Here we review studies to date regarding mPRs role in reproduction and cancer and discuss their functions and clinical relevance, suggesting mPRs as putative pharmacological targets and disease markers in cancer and diseases associated with reproduction.
Collapse
Affiliation(s)
- Paulina Valadez-Cosmes
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Edgar Ricardo Vázquez-Martínez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
10
|
Cunningham TJ, Duester G. Mechanisms of retinoic acid signalling and its roles in organ and limb development. Nat Rev Mol Cell Biol 2015; 16:110-23. [PMID: 25560970 PMCID: PMC4636111 DOI: 10.1038/nrm3932] [Citation(s) in RCA: 425] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Retinoic acid (RA) signalling has a central role during vertebrate development. RA synthesized in specific locations regulates transcription by interacting with nuclear RA receptors (RARs) bound to RA response elements (RAREs) near target genes. RA was first implicated in signalling on the basis of its teratogenic effects on limb development. Genetic studies later revealed that endogenous RA promotes forelimb initiation by repressing fibroblast growth factor 8 (Fgf8). Insights into RA function in the limb serve as a paradigm for understanding how RA regulates other developmental processes. In vivo studies have identified RAREs that control repression of Fgf8 during body axis extension or activation of homeobox (Hox) genes and other key regulators during neuronal differentiation and organogenesis.
Collapse
Affiliation(s)
- Thomas J Cunningham
- Development, Aging, and Regeneration Program, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, California 92037, USA
| | - Gregg Duester
- Development, Aging, and Regeneration Program, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|