1
|
Zhu M, Xu M, Zhang J, Zheng C. The role of Hippo pathway in ovarian development. Front Physiol 2023; 14:1198873. [PMID: 37334049 PMCID: PMC10275494 DOI: 10.3389/fphys.2023.1198873] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
The follicle is the functional unit of the ovary, whereby ovarian development is largely dependent on the development of the follicles themselves. The activation, growth, and progression of follicles are modulated by a diverse range of factors, including reproductive endocrine system and multiple signaling pathways. The Hippo pathway exhibits a high degree of evolutionary conservation between both Drosophila and mammalian systems, and is recognized for its pivotal role in regulating cellular proliferation, control of organ size, and embryonic development. During the process of follicle development, the components of the Hippo pathway show temporal and spatial variations. Recent clinical studies have shown that ovarian fragmentation can activate follicles. The mechanism is that the mechanical signal of cutting triggers actin polymerization. This process leads to the disruption of the Hippo pathway and subsequently induces the upregulation of downstream CCN and apoptosis inhibitors, thereby promoting follicle development. Thus, the Hippo pathway plays a crucial role in both the activation and development of follicles. In this article, we focused on the development and atresia of follicles and the function of Hippo pathway in these processes. Additionally, the physiological effects of Hippo pathway in follicle activation are also explored.
Collapse
|
2
|
Zhang P, Yang S, Zhang H, Hao H, Du W, Wang J, Hao T, Zhu H, Umer S, Zhao X. Vitrification of bovine germinal vesicle oocytes significantly decreased the methylation level of their in vitro derived MII oocytes. Reprod Fertil Dev 2022; 34:889-903. [PMID: 35927063 DOI: 10.1071/rd22130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
CONTEXT The vitrification of oocytes is important for the conservation of animals, and the effect of vitrification on methylation patterns of bovine oocytes remains unclear. AIMS This article aims to investigate the effect of vitrification on the DNA methylation patterns on vitrified GV oocytes and their in vitro derived MII oocytes. METHODS 5-MeC staining and single-cell whole genome bisulphite sequencing (SC-WGBS) were utilised to analyse fresh GV oocytes (F_GV group), MII oocytes (F_MII group), vitrified GV oocytes (V_GV group) and their in vitro derived MII oocytes (V_MII group). KEY RESULTS Results of both 5-MeC staining and SC-WGBS showed that no significant difference was found between the F_GV group and the V_GV group, while the methylation level of the V_MII group was significantly lower than that of the F_MII group. Moreover, supplementation of 2μM resveratrol (Res) in IVM medium significantly improved maturation and development ability of vitrified GV oocytes by restoring their DNA methylation levels. CONCLUSION In conclusion, vitrification of bovine GV oocytes significantly decreased the DNA methylation level of their in vitro derived MII oocytes, and 2μM Res improved their development ability by restoring DNA methylation level. IMPLICATIONS Our results provide an efficient approach to improve the maturation and fertilisation ability of vitrified GV oocytes.
Collapse
Affiliation(s)
- Peipei Zhang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Sha Yang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Hang Zhang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Haisheng Hao
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Weihua Du
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Jingjing Wang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Tong Hao
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Huabin Zhu
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Saqib Umer
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Xueming Zhao
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| |
Collapse
|
3
|
Cai MD, Xu ZQ, Liu YH, Liu JQ, Zhao SY, Wang XJ, Li YH, Yu XL, Li XX. LncRNA-mediated effects of vitrification temperatures and cryoprotectant concentrations on bovine oocyte development following vitrification at the GV stage. Theriogenology 2022; 186:135-145. [DOI: 10.1016/j.theriogenology.2022.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 11/05/2022]
|
4
|
Hochi S. Cryodevices developed for minimum volume cooling vitrification of bovine oocytes. Anim Sci J 2022; 93:e13683. [PMID: 35075717 PMCID: PMC9286375 DOI: 10.1111/asj.13683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Abstract
Unfertilized bovine oocytes can be efficiently cryopreserved only when an extremely rapid cooling rate (>20,000°C/min) is applied to oocytes with a very limited amount of surrounding vitrification solution. This protocol is defined as minimum volume cooling (MVC) vitrification. Various types of cryodevices, such as open pulled straw, Cryoloop, and Cryotop, have been developed to accelerate the cooling efficacy. Furthermore, hollow fibers with nano-scale pores, triangle nylon mesh sheets, and multilayer silk fibroin sheets have been optimized for the loading of large quantities of oocytes and/or the subsequent removal of excess vitrification solution, without requiring skillful operation to transfer individual oocytes using fine capillaries. This article provides an up-to-date review of cryodevices suitable for the MVC vitrification of bovine oocytes at the immature (germinal vesicle-) and mature (metaphase II-) stages.
Collapse
Affiliation(s)
- Shinichi Hochi
- Faculty of Textile Science and TechnologyShinshu UniversityUedaNaganoJapan
| |
Collapse
|
5
|
Vitrification of immature bovine oocytes in protein-free media: The impact of the cryoprotectant treatment protocol, base medium, and ovary storage. Theriogenology 2021; 172:47-54. [PMID: 34098168 DOI: 10.1016/j.theriogenology.2021.05.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 11/23/2022]
Abstract
Protein-free media are essential for the sanitary cryopreservation of bovine genetic resources. Our aim was to set up an optimized protocol for the vitrification of immature bovine oocytes using protein free media which can provide the highest embryo development rates and embryo quality after subsequent in vitro maturation and fertilization. First, using a protein free NCSU-37 as base medium we compared the efficacy of vitrification on Cryotop device with two different CPA protocols. "Protocol A″ employed a combination of ethylene glycol and propylene glycol as permeating cryoprotectants (pCPA) and equilibration in 4% total pCPA (2% ethylene glycol + 2% propylene glycol). "Protocol B″ employed a combination of ethylene glycol and DMSO and equilibration in 15% total pCPA (7.5% ethylene glycol + 7.5% DMSO). The 2 protocols were equally effective in terms of oocyte survival and subsequent development to the blastocyst stage. However, blastocyst cell numbers were significantly higher with "Protocol A". TCM-199 and NCSU-37 were equally effective as base media for vitrification. Vitrification with "Protocol A″ reduced the percentage of live oocytes and subsequent development to blastocyst stage but did not affect the hatching and cell numbers of blastocysts when compared to the non-treated group. CPA treatment of "Protocol A″ without cooling did not affect embryo development. Storage of ovaries in PBS at 15 °C for overnight reduced the percentage of surviving oocytes after vitrification but not their subsequent development to the blastocyst stage. In conclusion we established a vitrification protocol for the cryopreservation of immature bovine oocytes employing protein-free media which provided high blastocyst quality without noticeable toxic effects.
Collapse
|
6
|
Zhang Z, Mu Y, Ding D, Zou W, Li X, Chen B, Leung PC, Chang HM, Zhu Q, Wang K, Xue R, Xu Y, Zou H, Zhou P, Wei Z, Cao Y. Melatonin improves the effect of cryopreservation on human oocytes by suppressing oxidative stress and maintaining the permeability of the oolemma. J Pineal Res 2021; 70:e12707. [PMID: 33274466 DOI: 10.1111/jpi.12707] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/17/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022]
Abstract
Cryopreservation causes cryoinjury to oocytes and impairs their developmental competence. Melatonin (MLT) can improve the effect of cryopreservation in animal oocytes. However, no such studies on human oocytes have been reported. In this study, collected in vitro-matured human oocytes were randomly divided into the following groups: fresh group, MLT-treated cryopreservation (MC) group, and no-MLT-treated cryopreservation (NC) group. After vitrification and warming, viable oocytes from these three groups were assessed for their mitochondrial function, ultrastructure, permeability of oolemma, early apoptosis, developmental competence, and cryotolerance-related gene expression. First, fluorescence staining results revealed that oocytes from the 10-9 M subgroup showed the lowest intracellular reactive oxygen species and Ca2+ levels and highest mitochondrial membrane potential among the MC subgroups (10-11 , 10-9 , 10-7 , and 10-5 M). In subsequent experiments, oocytes from the 10-9 M-MC group were observed to maintain the normal ultrastructural features and the permeability of the oolemma. Compared with those of the oocytes in the NC group, the early apoptosis rate significantly decreased (P < .01), whereas both the high-quality cleavage embryo and blastocyst rates significantly increased (both P < .05) in the oocytes of the 10-9 M-MC group. Finally, single-cell RNA sequencing and immunofluorescence results revealed that aquaporin (AQP) 1/2/11 gene expression and AQP1 protein expression were upregulated in the MC group. Therefore, these results suggest that MLT can improve the effect of cryopreservation on human oocytes by suppressing oxidative stress and maintaining the permeability of the oolemma.
Collapse
Affiliation(s)
- Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
- NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China
- Department of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Yaoqin Mu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
- NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China
| | - Ding Ding
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
- NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China
| | - Weiwei Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
- NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China
| | - Xinyuan Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Anhui, China
| | - Beili Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Anhui, China
| | - Peter Ck Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Qi Zhu
- Department of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Kaijuan Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Anhui, China
| | - Rufeng Xue
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Anhui, China
| | - Yuping Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Anhui, China
| | - Huijuan Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
- NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
- NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
- NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
- NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China
| |
Collapse
|
7
|
Kasman AAMN, Santoso B, Widjiati W. The effect of vitrification after warming on the expressions of p38, CDK1, and cyclin B in immature goat oocytes followed by in vitro maturation. Vet World 2020; 13:2126-2132. [PMID: 33281346 PMCID: PMC7704326 DOI: 10.14202/vetworld.2020.2126-2132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
Background and Aim The combination of vitrification techniques and in vitro maturation can reduce oocyte competence. Mitogen-activated protein kinase and maturation-promoting factor are significant in oocyte meiotic maturation regulation. This study aimed to analyze vitrification's effect, after warming followed by in vitro maturation, on the expressions of protein 38 (p38), cyclin-dependent kinase 1 (CDK1), and cyclin B and oocyte maturation level. Materials and Methods Immature goat oocytes were soaked in vitrification and warming solutions. The procedure was followed by in vitro maturation and in vitro maturation without post-warming vitrification as a control. These oocytes, along with their cumulus, were vitrified using hemistraw in liquid nitrogen. Oocyte maturation was carried out in a maturation medium that was added with 10 μg/mL of FSH, 10 μg/mL of LH, and 1 μg/mL E2 for 22 h. The expressions of p38, CDK1, and cyclin B were observed using immunocytochemical methods, which were assessed semiquantitatively according to the modified Remmele method. The oocyte maturation level was observed using the aceto-orcein staining method based on the achievement of chromosomes up to the metaphase II stage and/or the formation of the polar body I. Results p38 expression in vitrified oocytes after warming, followed by in vitro maturation, increased insignificantly (p≥0.05), with the acquisition of 3.91±2.69 and 2.69±0.50 in the control oocytes. CDK1 expression in vitrified oocytes decreased significantly (p≤0.05) after warming, followed by in vitro maturation, with the acquisition of 2.73±1.24 and 7.27±4.39 in the control oocytes. Cyclin B expression in vitrified oocytes decreased insignificantly (p≥0.05) after warming, followed by in vitro maturation, with the acquisition of 3.09±1.4 and 4.18±2.61 in the control oocytes. The proportion of vitrified oocyte maturation levels after warming, followed by in vitro maturation, decreased significantly (p≤0.05), with the acquisition of 45.45% and 77.27% in the control oocytes. Conclusion This study concluded that vitrification after warming resulted in an insignificant increase in p38 expression, a significant decrease in CDK1 expression, an insignificant decrease in cyclin B expression, and a significant reduction in oocyte maturation levels.
Collapse
Affiliation(s)
- A A Muhammad Nur Kasman
- Student of Doctoral Program Medicine Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.,Faculty of Health Science, Universitas Muhammadiyah Mataram, Mataram, Indonesia
| | - Budi Santoso
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Widjiati Widjiati
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
8
|
Zhang ZY, Yu XL, Cai MD, Liu YH, Liu JQ, Zhao SY, Li XX, Li YH. Relationship between bovine oocytes developmental competence and mRNA expression of apoptotic and mitochondrial genes following the change of vitrification temperatures and cryoprotectant concentrations. Cryobiology 2020; 97:110-122. [PMID: 33011172 DOI: 10.1016/j.cryobiol.2020.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/09/2023]
Abstract
The present study analyzed the relationship between bovine oocytes developmental competence and mRNA expression of apoptotic and mitochondrial genes following the change of vitrification temperatures (VTs) and cryoprotectant agent concentrations (CPAs). Cumulus oocyte complexes were randomly divided into five groups: control, vitrified in liquid nitrogen (LN; -196 °C) with 5.6 M CPAs (LN 5.6 M), LN with 6.6 M CPAs (LN 6.6 M), liquid helium (LHe; -269 °C) with 5.6 M CPAs (LHe 5.6 M), and LHe with 6.6 M CPAs (LHe 6.6 M). After vitrification and warming, oocytes of vitrified and control groups were subjected to in vitro maturation (IVM), in vitro fertilization and in vitro culture. The blastocyst rate in LHe 5.6 M group was the highest among the four vitrified groups (13.7% vs. 9.4%, 1.3%, and 8.4%; P < 0.05). The mRNA expression level of 8 apoptotic- and 12 mitochondria-related genes were detected through qRT-PCR after IVM. Lower VT (LHe, -269 °C) positively affected the mRNA expression levels of apoptotic genes (BAD, BID, BTK, TP53, and TP53I3) and mitochondrial genes (COX6B1, DERA, FIS1, NDUFA1, NDUFA4, PRDX2, SLC25A5, TFB1M, and UQCRB), and reduced oxidative stress from freezing. Decreased CPAs (5.6 M) positively affected mRNA expression levels of apoptotic genes (BAD, BCL2A1, BID, and CASP3) in LHe vitrification but negatively affected apoptotic genes (BAD, BAX, BID, BTK, and BCL2A1) in LN vitrification. In conclusion, decreased VTs and CPAs in LHe vitrification may increase the blastocyst rate by changing the mRNA expression levels of these apoptotic and mitochondrial genes for the vitrified oocytes.
Collapse
Affiliation(s)
- Zhi Yang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Henan Provincial Key Laboratory for Grass-Feeding Animal, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xue Li Yu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Henan Provincial Key Laboratory for Grass-Feeding Animal, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Meng Dan Cai
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Henan Provincial Key Laboratory for Grass-Feeding Animal, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yi Heng Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Henan Provincial Key Laboratory for Grass-Feeding Animal, Henan University of Science and Technology, Luoyang, 471023, China
| | - Jia Qi Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Henan Provincial Key Laboratory for Grass-Feeding Animal, Henan University of Science and Technology, Luoyang, 471023, China
| | - Shi Yu Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Henan Provincial Key Laboratory for Grass-Feeding Animal, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xiao Xia Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Henan Provincial Key Laboratory for Grass-Feeding Animal, Henan University of Science and Technology, Luoyang, 471023, China
| | - Ying Hua Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Henan Provincial Key Laboratory for Grass-Feeding Animal, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
9
|
Barberet J, Barry F, Choux C, Guilleman M, Karoui S, Simonot R, Bruno C, Fauque P. What impact does oocyte vitrification have on epigenetics and gene expression? Clin Epigenetics 2020; 12:121. [PMID: 32778156 PMCID: PMC7418205 DOI: 10.1186/s13148-020-00911-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
Children conceived by assisted reproductive technologies (ART) have a moderate risk for a number of adverse events and conditions. The question whether this additional risk is associated with specific procedures used in ART or whether it is related to the intrinsic biological factors associated with infertility remains unresolved. One of the main hypotheses is that laboratory procedures could have an effect on the epigenome of gametes and embryos. This suspicion is linked to the fact that ART procedures occur precisely during the period when there are major changes in the organization of the epigenome. Oocyte freezing protocols are generally considered safe; however, some evidence suggests that vitrification may be associated with modifications of the epigenetic marks. In this manuscript, after describing the main changes that occur during epigenetic reprogramming, we will provide current information regarding the impact of oocyte vitrification on epigenetic regulation and the consequences on gene expression, both in animals and humans. Overall, the literature suggests that epigenetic and transcriptomic profiles are sensitive to the stress induced by oocyte vitrification, and it also underlines the need to improve our knowledge in this field.
Collapse
Affiliation(s)
- Julie Barberet
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction, CECOS, 14 rue Gaffarel, 21079 Dijon Cedex, France
| | - Fatima Barry
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction, CECOS, 14 rue Gaffarel, 21079 Dijon Cedex, France
| | - Cécile Choux
- Gynécologie-Obstétrique, CHU Dijon Bourgogne, 14 rue Gaffarel, 21079 Dijon Cedex, France
| | - Magali Guilleman
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction, CECOS, 14 rue Gaffarel, 21079 Dijon Cedex, France
| | - Sara Karoui
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction, CECOS, 14 rue Gaffarel, 21079 Dijon Cedex, France
| | - Raymond Simonot
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction, CECOS, 14 rue Gaffarel, 21079 Dijon Cedex, France
| | - Céline Bruno
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction, CECOS, 14 rue Gaffarel, 21079 Dijon Cedex, France
| | - Patricia Fauque
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction, CECOS, 14 rue Gaffarel, 21079 Dijon Cedex, France
| |
Collapse
|
10
|
Zhang F, Zhang ZY, Cai MD, Li XX, Li YH, Lei Y, Yu XL. Effect of vitrification temperature and cryoprotectant concentrations on the mRNA transcriptome of bovine mature oocytes after vitrifying at immature stage. Theriogenology 2019; 148:225-235. [PMID: 31761539 DOI: 10.1016/j.theriogenology.2019.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 01/14/2023]
Abstract
The present study aimed to investigate the effect of vitrification temperature (VT) and cryoprotective agent concentrations (CPAs) on the mRNA transcriptome of bovine mature oocytes after vitrifying at immature stage. Cumulus oocyte complexes (COCs) were randomly divided into the following five groups: fresh oocytes (control), oocytes vitrified in liquid helium (LHe; -269 °C) with 5.6 M CPAs (LHe 5.6 M), oocytes vitrified in LHe with 6.6 M CPAs (LHe 6.6 M), oocytes vitrified in liquid nitrogen (LN; -196 °C) with 5.6 M CPAs (LN 5.6 M), and oocytes vitrified in LN with 6.6 M CPAs (LN 6.6 M). We performed two experiments in this study. In experiment 1, after vitrification and thawing, oocytes of vitrified and control groups were subjected to in vitro maturation (IVM), in vitro fertilization (IVF) and in vitro culture (IVC). The rates of normal morphology, maturation, cleavage, and blastocyst formation in LHe 5.6 M were higher than those in LN 5.6 M (P < 0.05). The rates of normal morphology and cleavage in LHe 6.6 M were higher than those in LN 6.6 M (P < 0.05). However, the maturation and blastocyst rates were similar (P > 0.05) between LHe 6.6 M and LN 6.6 M. The blastocyst rate of 13.31% in LHe 5.6 M was the highest among all vitrified groups (P < 0.05). In experiment 2, the mRNA transcriptome of each sample was analyzed by Smart-Seq4, and the differentially expressed genes (DEGs) were detected by edgeR (P ≤ 0.05; fold-change ≥ 2). A total of 505 DEGs (342 upregulated and 163 downregulated genes) were detected in LHe 5.6 M; 609 DEGs (493 upregulated and 116 downregulated genes) were detected in LHe 6.6 M; 218 DEGs (101 upregulated and 117 downregulated genes) were determined in LN 5.6 M; and 221 DEGs (104 upregulated and 117 downregulated genes) were detected in LN 6.6 M. LHe vitrification affected the mRNA transcriptome of bovine mature oocytes after vitrifying at immature stage mainly by upregulating gene expression. Decreased CPAs (5.6 M) reduced the effect of vitrification on mRNA transcriptome when LHe vitrification was used. Among the DEGs closely related to bovine oocytes, the genes possibly related to VT were ND2, MPV17L2, PIF1, LPIN1, IMP3, BRD1, DCTN3, DERA, ATP7B, NEK5, HVCN1, and MARK2. The gene that may be associated with CPAs is CC2D2A. Genes that may be affected by VT and CPAs included PGK1, SLC7A3, FITM2, NPM3, ISCU, CWC15, and PSAP.
Collapse
Affiliation(s)
- Fan Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Henan Provincial Key Laboratory for Grass-Feeding Animal, Henan University of Science and Technology, Luoyang, 471023, China
| | - Zhi-Yang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Henan Provincial Key Laboratory for Grass-Feeding Animal, Henan University of Science and Technology, Luoyang, 471023, China
| | - Meng-Dan Cai
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Henan Provincial Key Laboratory for Grass-Feeding Animal, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xiao-Xia Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Henan Provincial Key Laboratory for Grass-Feeding Animal, Henan University of Science and Technology, Luoyang, 471023, China
| | - Ying-Hua Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Henan Provincial Key Laboratory for Grass-Feeding Animal, Henan University of Science and Technology, Luoyang, 471023, China
| | - Ying Lei
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xue-Li Yu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Henan Provincial Key Laboratory for Grass-Feeding Animal, Henan University of Science and Technology, Luoyang, 471023, China.
| |
Collapse
|
11
|
Huang J, Ma Y, Wei S, Pan B, Qi Y, Hou Y, Meng Q, Zhou G, Han H. Dynamic changes in the global transcriptome of bovine germinal vesicle oocytes after vitrification followed by in vitro maturation. Reprod Fertil Dev 2019; 30:1298-1313. [PMID: 29661269 DOI: 10.1071/rd17535] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/13/2018] [Indexed: 12/11/2022] Open
Abstract
This study was conducted to investigate the effect of vitrification on the dynamics of the global transcriptome in bovine germinal vesicle (GV) oocytes and their in vitro-derived metaphase II (MII) oocytes. The GV oocytes were vitrified using the open-pulled straw method. After warming, GV oocytes and the resulting MII-stage oocytes were cultured in vitro for 2h and 24h respectively and were then collected. The fresh GV oocytes and their in vitro-derived MII oocytes were used as controls. Then, each pool (fresh GV, n=3; vitrified GV, n=4; fresh MII, n=1 and MII derived from vitrified GV, n=2) from the different stages was used for mRNA transcriptome sequencing. The results showed that the in vitro maturation rates of GV oocytes were significantly decreased (32.36% vs 53.14%) after vitrification. Bovine GV oocyte vitrification leads to 12 significantly upregulated and 19 downregulated genes. After culturing in vitro, the vitrification-derived MII oocytes showed 47 significantly upregulated and six downregulated genes when compared with those from fresh GV oocytes. Based on molecular function-gene ontology terms analysis and the Kyoto encyclopaedia of genes (KEGG) pathway database, the differentially expressed genes were associated with the pathways of cell differentiation and mitosis, transcription regulation, regulation of actin cytoskeleton, apoptosis and so on, which potentially result in the lower in vitro development of GV bovine oocytes.
Collapse
Affiliation(s)
- Jianwei Huang
- Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - YongShun Ma
- Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Shao Wei
- Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Bo Pan
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yu Qi
- Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - YunPeng Hou
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing 100193, PR China
| | - QingYong Meng
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing 100193, PR China
| | - GuangBin Zhou
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China
| | - HongBing Han
- Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
12
|
Wu Z, Pan B, Qazi IH, Yang H, Guo S, Yang J, Zhang Y, Zeng C, Zhang M, Han H, Meng Q, Zhou G. Melatonin Improves In Vitro Development of Vitrified-Warmed Mouse Germinal Vesicle Oocytes Potentially via Modulation of Spindle Assembly Checkpoint-Related Genes. Cells 2019; 8:E1009. [PMID: 31480299 PMCID: PMC6770451 DOI: 10.3390/cells8091009] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022] Open
Abstract
The present study aimed to investigate the effect of melatonin (MT) supplementation on in vitro maturation of vitrified mouse germinal vesicle (GV) oocytes. The fresh oocytes were randomly divided into three groups: untreated (control), or vitrified by open-pulled straw method without (vitrification group) or with MT supplementation (vitrification + MT group). After warming, oocytes were cultured in vitro, then the reactive oxygen species (ROS) and glutathione (GSH) levels, mitochondrial membrane potential, ATP levels, spindle morphology, mRNA expression of spindle assembly checkpoint (SAC)-related genes (Mps1, BubR1, Mad1, Mad2), and their subsequent developmental potential in vitro were evaluated. The results showed that vitrification/warming procedures significantly decreased the percentage of GV oocytes developed to metaphase II (MII) stage, the mitochondrial membrane potential, ATP content, and GSH levels, remarkably increased the ROS levels, and significantly impaired the spindle morphology. The expressions of SAC-related genes were also altered in vitrified oocytes. However, when 10-7 mol/L MT was administered during the whole length of the experiment, the percentage of GV oocytes matured to MII stage was significantly increased, and the other indicators were also significantly improved and almost recovered to the normal levels relative to the control. Thus, we speculate that MT might regulate the mitochondrial membrane potential, ATP content, ROS, GSH, and expression of SAC-related genes, potentially increasing the in vitro maturation of vitrified-warmed mouse GV oocytes.
Collapse
Affiliation(s)
- Zhenzheng Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Pan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Izhar Hyder Qazi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Department of Veterinary Anatomy & Histology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Sindh, Pakistan
| | - Haoxuan Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Shichao Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jingyu Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Changjun Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ming Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongbing Han
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Qingyong Meng
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing 100193, China
| | - Guangbin Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
13
|
Gene expression analysis of ovine prepubertal testicular tissue vitrified with a novel cryodevice (E.Vit). J Assist Reprod Genet 2019; 36:2145-2154. [PMID: 31414315 DOI: 10.1007/s10815-019-01559-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Testicular tissue cryopreservation prior to gonadotoxic therapies is a method to preserve fertility in children. However, the technique still requires development, especially when the tissue is immature and rather susceptible to stress derived from in vitro manipulation. This study aimed to investigate the effects of vitrification with a new cryodevice (E.Vit) on cell membrane integrity and gene expression of prepubertal testicular tissue in the ovine model. METHODS Pieces of immature testicular tissue (1 mm3) were inserted into "E.Vit" devices and vitrified with a two-step protocol. After warming, tissues were cultured in vitro and cell membrane integrity was assessed after 0, 2, and 24 h by trypan blue exclusion test. Controls consisted of non-vitrified tissue analyzed after 0, 2, and 24 h in vitro culture (IVC). Expression of genes involved in transcriptional stress response (BAX, SOD1, CIRBP, HSP90AB1), cell proliferation (KIF11), and germ- (ZBDB16, TERT, POU5F1, KIT) and somatic- (AR, FSHR, STAR) cell specific markers was evaluated 2 and 24 h after warming. RESULTS Post-warming trypan blue staining showed the survival of most cells, although membrane integrity immediately after warming (66.00% ± 4.73) or after 2 h IVC (59.67% ± 4.18) was significantly lower than controls (C0h 89.67% ± 1.45). Extended post-warming IVC (24 h) caused an additional decrease to 31% ± 3.46 (P < 0.05). Germ- and somatic-cell specific markers showed the survival of both cell types after cryopreservation and IVC. All genes were affected by cryopreservation and/or IVC, and moderate stress conditions were indicated by transcriptional stress response. CONCLUSIONS Vitrification with the cryodevice E.Vit is a promising strategy to cryopreserve prepubertal testicular tissue.
Collapse
|
14
|
Transcriptome analysis of porcine immature oocytes and surrounding cumulus cells after vitrification and in vitro maturation. Theriogenology 2019; 134:90-97. [PMID: 31158735 DOI: 10.1016/j.theriogenology.2019.05.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/19/2019] [Accepted: 05/25/2019] [Indexed: 12/15/2022]
Abstract
Cryopreservation impairs oocyte quality, which may be associated with abnormal gene expression. Currently, alteration of mRNA levels in vitrified porcine oocytes has not been well characterized. The aim of this study was to analyze transcriptome profiles with RNA sequencing (RNA-seq) in porcine immature oocytes and their surrounding cumulus cells (CCs) after vitrification and in vitro maturation (IVM). There were 19 upregulated and 18 downregulated genes differentially expressed in vitrified oocytes, with no significant GO enrichment or KEGG pathway identified for these genes. In addition, CCs derived from vitrified oocytes had 40 significantly upregulated and 100 significantly downregulated genes. In total, 7 GO terms were significantly enriched in molecular function and biological process, and only MAPK signaling pathway reached significant enrichment based on KEGG analysis. Moreover, selected differentially expressed genes had similar expression patterns through comparison between results from qRT-PCR and RNA-Seq. In conclusion, our data provided detailed information on mRNA transcriptomes in porcine immature oocytes and CCs after vitrification and IVM, which offered now insights regarding reduced developmental potential of the vitrified oocytes.
Collapse
|
15
|
Sanaei B, Movaghar B, Valojerdi MR, Ebrahimi B, Bazrgar M, Jafarpour F, Nasr-Esfahani MH. An improved method for vitrification of in vitro matured ovine oocytes; beneficial effects of Ethylene Glycol Tetraacetic acid, an intracellular calcium chelator. Cryobiology 2018; 84:82-90. [PMID: 30244698 DOI: 10.1016/j.cryobiol.2018.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/03/2018] [Accepted: 07/02/2018] [Indexed: 01/17/2023]
Abstract
Vitrification affects fertilization ability and developmental competence of mammalian oocytes. This effect may be more closely associated with an intracellular calcium rise induced by cryoprotectants. The present study aimed to assess whether addition of Ethylene Glycol Tetraacetic acid (EGTA) to vitrification solution could improve quality and developmental competence of in vitro matured ovine oocytes. Vitrified groups were designed according to the presence or absence of EGTA and/or calcium in base media, including: mPB1+ (modified PBS with Ca2+), mPB1- (modified PBS without Ca2+), mPB1+/EGTA (mPB1+ containing EGTA), mPB1-/EGTA (mPB1- containing EGTA). In vitro development, numerical chromosome abnormalities, hardening of zona pellucida, mitochondrial distribution and function of viable oocytes were evaluated and compared between groups. Quality of blastocysts was assessed by differential and TUNEL staining. Also, mRNA expression levels of six candidate genes (KIF11, KIF2C, CENP-E, KIF20A, KIF4A and KIF2A), were quantitatively evaluated by RT-PCR. Our results showed that calcium-free vitrification and EGTA supplementation can significantly increase the percentage of normal haploid oocytes and maintain normal distribution and function of mitochondria in vitrified ovine oocytes, consequently improving developmental rate after in vitro fertilization. qRT-PCR analysis showed no significant difference in mRNA expression levels of kinesin genes between vitrified and fresh oocytes. Also, the presence of calcium in vitrification solution significantly increased zona hardening. In conclusion, we have shown for the first time that supplementation of vitrification solution with EGTA, as a calcium chelator, improved the ability of vitrified ovine oocytes to preserve mitochondrial distribution and function, as well as normal chromosome segregation.
Collapse
Affiliation(s)
- Batool Sanaei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Bahar Movaghar
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | | | - Bita Ebrahimi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Masood Bazrgar
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Farnoosh Jafarpour
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
16
|
Expression of CD9 and CD81 in bovine germinal vesicle oocytes after vitrification followed by in vitro maturation. Cryobiology 2018; 81:206-209. [PMID: 29476719 DOI: 10.1016/j.cryobiol.2018.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/12/2018] [Accepted: 02/16/2018] [Indexed: 12/21/2022]
Abstract
The present study aimed to investigate the effect of vitrification on the expression of fertilization related genes (CD9 and CD81) and DNA methyl transferases (DNMT1 and DNMT3b) in bovine germinal vesicle (GV) oocytes and their resulting metaphase Ⅱ (MⅡ) stages after in vitro maturation culture. GV oocytes were vitrified using the open-pulled straw method; after warming, they were cultured in vitro. The vitrified-warmed GV oocytes and more developed MII oocytes were used to calculate the maturation rates (first polar body extrusion under a stereomicroscopy), and to detect mRNA expression (qRT-PCR). Fresh GV oocytes and their in vitro-derived MII oocytes served as controls. The results showed that both the maturation rate (54.23% vs. 42.93%) and the relative abundance of CD9 mRNA decreased significantly (p < 0.05) in bovine GV oocytes after vitrification, but the expression of CD81 and DNMT3b increased significantly. After in vitro maturation of vitrified GV oocytes, the resulting MII oocytes showed lower (p < 0.05) mRNA expression of genes (CD9, CD81, DNMT1 and DNMT3b) when compared to the control group (MII oocytes). Altogether, vitrification decreased the maturation rate of bovine GV oocytes and changed the expression of fertilization related genes and DNA methyl transferases during in vitro maturation.
Collapse
|