1
|
Lu PS, Sun SC. Mycotoxin toxicity and its alleviation strategy on female mammalian reproduction and fertility. J Adv Res 2025:S2090-1232(25)00041-4. [PMID: 39814223 DOI: 10.1016/j.jare.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/23/2024] [Accepted: 01/12/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Mycotoxin, a secondary metabolite of fungus, found worldwide and concerning in crops and food, causes multiple acute and chronic toxicities. Its toxic profile includes hepatotoxicity, carcinogenicity, teratogenicity, estrogenicity, immunotoxicity, and neurotoxicity, leading to deleterious impact on human and animal health. Emerging evidence suggests that it adversely affects perinatal health and progeny by its ability to cross placental barriers. AIM OF REVIEW Due to its wide occurrence and potential toxicity on reproductive health, it is essential to understand the mechanisms of mycotoxin-related reproductive toxicity. This review summarizes the toxicities and mechanisms of mycotoxin on maternal and offspring reproduction among mammalian species. Approaches for effective mycotoxin alleviation are also discussed, providing strategies against mycotoxin contamination. KEY SCIENTIFIC CONCEPTS OF REVIEW The profound mycotoxin toxicities in female mammalian reproduction affect follicle assembly, embryo development, and fetus growth, thereby decreasing offspring fertility. Factors from endocrine system such as hypothalamic-pituitary-gonadal axis and gut-ovarian axis, placenta ABC transporters, organelle and cytoskeleton dynamics, cell cycle control, genomic stability, and redox homeostasis are found to be closely related to mycotoxin toxicities. Approaches from physical, chemical, biological, and supplementation of natural antioxidants are discussed for the mycotoxin elimination, while their applications are not widespread. Available ways for mycotoxin and its toxicities alleviation need further study. Since a species-, time-, and dose-specific response might exist in mycotoxin toxicities, more consideration should be given to the protocols for mycotoxin toxicity studies, such as experimental animal models, exposure duration, and dosage. Specific mechanism for mycotoxin, especially form a molecular biology perspective, could be investigated with multi-omics technologies and advanced imaging techniques. Mass spectrometry with algorithms may provide more accurate exposure assessments, and it may be further helpful to identify the high-risk individuals in the future.
Collapse
Affiliation(s)
- Ping-Shuang Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Research On Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Reproductive Medicine of Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| |
Collapse
|
2
|
Li JR, Wu SL, Hu LL, Liao BY, Sun SC. HT-2 toxin impairs porcine oocyte in vitro maturation through disruption of endomembrane system. Theriogenology 2024; 226:286-293. [PMID: 38954997 DOI: 10.1016/j.theriogenology.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/17/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
HT-2 toxin is a type of mycotoxin which is shown to affect gastric and intestinal lesions, hematopoietic and immunosuppressive effects, anorexia, lethargy, nausea. Recently, emerging evidences indicate that HT-2 also disturbs the reproductive system. In this study, we investigated the impact of HT-2 toxin exposure on the organelles of porcine oocytes. Our results found that the abnormal distribution of endoplasmic reticulum increased after HT-2 treatment, with the perturbation of ribosome protein RPS3 and GRP78 expression; Golgi apparatus showed diffused localization pattern and GM130 localization was also impaired, thereby affecting the Rab10-based vesicular transport; Due to the impairment of ribosomes, ER, and Golgi apparatus, the protein supply to lysosomes was hindered, resulting in lysosomal damage, which further disrupted the LC3-based autophagy. Moreover, the results indicated that the function and distribution of mitochondria were also affected by HT-2 toxin, showing with fragments of mitochondria, decreased TMRE and ATP level. Taken together, our study suggested that HT-2 toxin exposure induces damage to the organelles for endomembrane system, which further inhibited the meiotic maturation of porcine oocytes.
Collapse
Affiliation(s)
- Jia-Rui Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Si-Le Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lin-Lin Hu
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Bi-Yun Liao
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
3
|
Li L, He Z, Shi Y, Sun H, Yuan B, Cai J, Chen J, Long M. Role of epigenetics in mycotoxin toxicity: a review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104154. [PMID: 37209890 DOI: 10.1016/j.etap.2023.104154] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/25/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Mycotoxins can induce cell cycle disorders, cell proliferation, oxidative stress, and apoptosis through pathways such as those associated with MAPK, JAK2/STAT3, and Bcl-w/caspase-3, and cause reproductive toxicity, immunotoxicity, and genotoxicity. Previous studies have explored the toxicity mechanism of mycotoxins from the levels of DNA, RNA, and proteins, and proved that mycotoxins have epigenetic toxicity. To explore the toxic effects and mechanisms of these changes in mycotoxins, this paper summarizes the changes in DNA methylation, non-coding RNA, RNA and histone modification induced by several common mycotoxins (zearalenone, aflatoxin B1, ochratoxin A, deoxynivalenol, T-2 toxin, etc.) based on epigenetic studies. In addition, the roles of mycotoxin-induced epigenetic toxicity in germ cell maturation, embryonic development, and carcinogenesis are highlighted. In summary, this review provides theoretical support for a better understanding of the regulatory mechanism of mycotoxin epigenotoxicity and the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Liuliu Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China; Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China.
| | - Ziqi He
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China; Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China.
| | - Yang Shi
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China; Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China.
| | - Huiying Sun
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China; Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China.
| | - Bowei Yuan
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China; Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China.
| | - Jing Cai
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China; Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China.
| | - Jia Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China; Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China.
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China; Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China.
| |
Collapse
|
4
|
Ma J, Wei Z, Yang H, Liu L, Han Y, Wan Y. Melatonin protects Leydig cells from HT-2 toxin-induced ferroptosis and apoptosis via glucose-6-phosphate dehydrogenase/glutathione -dependent pathway. Int J Biochem Cell Biol 2023; 159:106410. [PMID: 37023974 DOI: 10.1016/j.biocel.2023.106410] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/14/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
HT-2 toxin is a mycotoxin commonly found in food and water that can have adverse effects on male reproductive systems, including testosterone secretion. Ferroptosis and apoptosis are two types of programmed cell death that have been implicated in the regulation of cellular functions. Melatonin, a powerful antioxidant with various physiological functions, has been shown to regulate testosterone secretion. However, the mechanisms underlying the protective effects of melatonin against HT-2 toxin-induced damage in testosterone secretion are not fully understood. In this study, we investigated the effects of HT-2 toxin on sheep Leydig cells and the potential protective role of melatonin. We found that HT-2 toxin inhibited cell proliferation and testosterone secretion of Leydig cells in a dose-dependent manner and induced ferroptosis and apoptosis through intracellular reactive oxygen species accumulation, leading to lipid peroxidation. Exposure of Leydig cells to melatonin in vitro reversed the defective phenotypes caused by HT-2 toxin via a glucose-6-phosphate dehydrogenase/glutathione-dependent mechanism. Interference of glucose-6-phosphate dehydrogenase disrupted the beneficial effect of melatonin on ferroptosis and apoptosis in HT-2 toxin-treated Leydig cells. Furthermore, similar results were observed in vivo in the testes of male mice injected with HT-2 toxin with or without melatonin treatment for 30 days. Our findings suggest that melatonin inhibits ferroptosis and apoptosis by elevating the expression of glucose-6-phosphate dehydrogenase to eliminate reactive oxygen species accumulation in HT-2 toxin-treated Leydig cells. These results provide fundamental evidence for eliminating the adverse effects of HT-2 toxin on male reproduction.
Collapse
Affiliation(s)
- Jianyu Ma
- Institute of Sheep and Goat Science; Nanjing Agricultural University, Nanjing, China
| | - Zongyou Wei
- Taicang Agricultural and rural science & technology Service Center, Suzhou, China
| | - Hua Yang
- Institute of Sheep and Goat Science; Nanjing Agricultural University, Nanjing, China
| | - Liang Liu
- Institute of Sheep and Goat Science; Nanjing Agricultural University, Nanjing, China
| | - Yuquan Han
- Institute of Sheep and Goat Science; Nanjing Agricultural University, Nanjing, China
| | - Yongjie Wan
- Institute of Sheep and Goat Science; Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
5
|
Yang X, Xiao X, Zhang L, Wang B, Li P, Cheng B, Liang C, Ma M, Guo X, Zhang F, Wen Y. An integrative analysis of DNA methylation and transcriptome showed the dysfunction of MAPK pathway was involved in the damage of human chondrocyte induced by T-2 toxin. BMC Mol Cell Biol 2022; 23:4. [PMID: 35038982 PMCID: PMC8762874 DOI: 10.1186/s12860-021-00404-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/28/2021] [Indexed: 12/05/2022] Open
Abstract
Background T-2 toxin is thought to induce the growth plate and articular cartilage damage of Kashin-Beck disease (KBD), an endemic osteochondropathy in China. This study aims to explore the potential underlying mechanism of such toxic effects by integrating DNA methylation and gene expression profiles. Methods In this study, C28/I2 chondrocytes were treated with T-2 toxin (5 ng/mL) for 24 h and 72 h. Global DNA methylation level of chondrocyte was tested by Enzyme-Linked Immuno Sorbent Assay. Genome-wide DNA methylation and expression profiles were detected using Illumina Infinium HumanMethylation850 BeadChip and RNA-seq technique, respectively. Differentially methylated genes (DMGs) and differentially expressed genes (DEGs) were identified mainly for two stages including 24 h group versus Control group and 72 h group versus 24 h group. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed by Metascape. DMGs and DEGs were further validated by Sequenom MassARRAY system and quantitative real-time polymerase chain reaction. Results The global DNA methylation levels of chondrocytes exposed to T-2 toxin were significantly increased (P < 0.05). For 24 h group versus Control group (24 VS C), 189 DEGs and 590 DMGs were identified, and 4 of them were overlapping. For 72 h group versus 24 h group (72 VS 24), 1671 DEGs and 637 DMGs were identified, and 45 of them were overlapping. The enrichment analysis results of DMGs and DEGs both showed that MAPK was the one of the mainly involved signaling pathways in the regulation of chondrocytes after T-2 toxin exposure (DEGs: P24VSc = 1.62 × 10− 7; P72VS24 = 1.20 × 10− 7; DMGs: P24VSc = 0.0056; P72VS24 = 3.80 × 10− 5). Conclusions The findings depicted a landscape of genomic methylation and transcriptome changes of chondrocytes after T-2 toxin exposure and suggested that dysfunction of MAPK pathway may play important roles in the chondrocytes damage induced by T-2 toxin, which could provide new clues for understanding the potential biological mechanism of KBD cartilage damage induced by T-2 toxin. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-021-00404-3.
Collapse
Affiliation(s)
- Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xue Xiao
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Lu Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Bo Wang
- HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaan'xi, 710061, People's Republic of China
| | - Ping Li
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Chujun Liang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Mei Ma
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
6
|
Jiang J, Zhu J, Liu Q, Zhang T, Wen J, Xia J, Deng Y. Role of DNA methylation-related chromatin remodeling in aryl hydrocarbon receptor-dependent regulation of T-2 toxin highly inducible Cytochrome P450 1A4 gene. FASEB J 2021; 35:e21469. [PMID: 33788981 DOI: 10.1096/fj.202002570rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 11/11/2022]
Abstract
Mycotoxins are toxic secondary metabolites produced by food-contaminating fungi, which lead to global epigenetic changes and cause toxicity to both farm animals and humans. However, whether mycotoxins induce gene-specific epigenetic alterations associated with inducible downstream gene expression is unclear as are the underlying regulatory mechanisms. Here, we found that T-2 toxin and its deacetylated metabolites but not deoxynivalenol (DON) or other representative mycotoxins highly induced the expression of cytochrome P450 1A4 (CYP1A4) in both Leghorn male hepatoma (LMH) cells and chicken primary hepatocytes, and this effect was related to the regulation of both aryl hydrocarbon receptor (AhR) and DNA methylation. We used methylation-sensitive restriction enzyme digestion-qPCR (MSRE-qPCR) and chromatin immunoprecipitation (ChIP) assays and found that the binding of DNA methyltransferase 1 (DNMT1) and histone deacetylase 2 (HDAC2) to highly methylated CpG island 3-2 at the enhancer of CYP1A4 was accompanied by the recruitment of the repressive histone modification marker H3K27me3, inducing a silent state. In turn, T-2 toxin stimulation enriched the binding of AhR to demethylated CpG island 3-2, which facilitated p300 and H3K9ac recruitment and ultimately generated an activated chromatin structure at the enhancer by increasing the active histone modification markers, including H3K4me3, H3K27ac, and H3K14ac. Interestingly, T-2 toxin-induced AhR activation also facilitated RNA polymerase II binding to CpG island 2, which may form a transcriptionally active chromatin structure at the promoter and ultimately transactivate CYP1A4. Our findings provide novel insights into the epigenetic regulation of T-2 toxin-induced gene expression.
Collapse
Affiliation(s)
- Jun Jiang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, P.R. China.,Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, P.R. China
| | - Jiahui Zhu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, P.R. China.,Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, P.R. China
| | - Qian Liu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, P.R. China.,Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, P.R. China
| | - Tingting Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, P.R. China.,Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, P.R. China
| | - Jikai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, P.R. China.,Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, P.R. China
| | - Jianhong Xia
- Key Laboratory of Regenerative Biology of Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P.R. China
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, P.R. China.,Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, P.R. China
| |
Collapse
|
7
|
Wang X, Sun M, Li J, Song X, He H, Huan Y. Melatonin protects against defects induced by Enniatin B1 during porcine early embryo development. Aging (Albany NY) 2021; 13:5553-5570. [PMID: 33589578 PMCID: PMC7950273 DOI: 10.18632/aging.202484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/30/2020] [Indexed: 12/30/2022]
Abstract
Exogenous factors influence embryo development. Enniatin B1 (EB1), one emerging mycotoxin of Fusarium fungi, can cause damage to cells and mouse blastocysts. However, the toxicity of EB1 on porcine embryo development and whether melatonin can eliminate the detrimental effects of EB1 on embryos remain unclear. Here, this work demonstrated that EB1 significantly decreased the cleavage and blastocyst rates and blastocyst cell number of embryos in a dose and time dependent manner. Further study displayed that EB1 obviously destroyed nuclear remodeling dynamics. Importantly, EB1 triggered embryo apoptosis through downregulating the expression of Sod1,Gpx4, Cat and Bcl2l1 while upregulating the transcription of Bax and Caspase3. Moreover, EB1 significantly disrupted the transcription of Dnmt1, Dnmt3a, Tet1 and Tet3, further leading to incomplete DNA demethylation of CenRep, Oct4, Nanog and Sox2, thus, the expression of Eif1a, Oct4, Nanog and Sox2 remarkably decreased. Whereas EB1-exposed embryos were treated with melatonin, these disorders were obviously ameliorated, and the development ability of embryos was also rescued. In conclusion, EB1 exerted detrimental effects on porcine early embryos, while melatonin effectively rescued EB1-mediated defects in embryos. This work provides a novel insight into the improvement of embryo quality and the promotion of human and animal reproduction.
Collapse
Affiliation(s)
- Xiangyu Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Mingju Sun
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Jingyu Li
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing Health Center for Women and Children, Chongqing 400013, China
| | - Xuexiong Song
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Hongbin He
- College of Life Science, Shandong Normal University, Jinan 250014, Shandong Province, China
| | - Yanjun Huan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| |
Collapse
|
8
|
Pang J, Yang H, Feng X, Wang Q, Cai Y, Liu Z, Wang C, Wang F, Zhang Y. HT-2 toxin affects cell viability of goat spermatogonial stem cells through AMPK-ULK1 autophagy pathways. Theriogenology 2021; 164:22-30. [PMID: 33529808 DOI: 10.1016/j.theriogenology.2021.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 01/04/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022]
Abstract
HT-2 toxin is widely found in moldy crops and is the major metabolite of T-2 toxin, which has been shown to exert various toxic effects in farm animals. However, little is known about the effects of HT-2 toxin on male reproduction, particularly spermatogenesis. This study aims to investigate the toxic effects of HT-2 toxin on goat spermatogonial stem cells (SSCs) and related autophagy-regulated mechanisms. Our results showed that HT-2 toxin exposure resulted in decreased cell viability and proliferation, disrupted SSCs self-renewal, and reduced germ cell-related gene expression. HT-2 toxin exposure also induced oxidative stress and cell apoptosis, as shown by ROS accumulation, increased antioxidant enzyme activity levels, decreased the mitochondrial membrane potential, and increased caspase-9 mRNA and Bcl/bax protein levels. Additionally, HT-2 toxin exposure increased the expression of the autophagy-inducing genes Atg5, Atg7 and Beclin1 and the number of autophagosomes, which indicated that HT-2 toxin induced autophagy in the goat SSCs. Moreover, we also examined a possible mechanism by which HT-2 toxin exposure induced higher expression of AMPK, mTOR and ULK at both the mRNA and protein levels. our results indicated that HT-2 toxin caused apoptosis and autophagy by activating AMPK-mTOR-ULK1 pathway, which further affected SSCs viability.
Collapse
Affiliation(s)
- Jing Pang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, NO. 1 Weigang, Nanjing, 210095, PR China
| | - Hua Yang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, NO. 1 Weigang, Nanjing, 210095, PR China
| | - Xu Feng
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, NO. 1 Weigang, Nanjing, 210095, PR China
| | - Qi Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, NO. 1 Weigang, Nanjing, 210095, PR China
| | - Yu Cai
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, NO. 1 Weigang, Nanjing, 210095, PR China
| | - Zifei Liu
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, NO. 1 Weigang, Nanjing, 210095, PR China
| | - Changjian Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, NO. 1 Weigang, Nanjing, 210095, PR China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, NO. 1 Weigang, Nanjing, 210095, PR China
| | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, NO. 1 Weigang, Nanjing, 210095, PR China.
| |
Collapse
|
9
|
Sun MH, Li XH, Xu Y, Xu Y, Sun SC. Exposure to PBDE47 affects mouse oocyte quality via mitochondria dysfunction-induced oxidative stress and apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 198:110662. [PMID: 32339927 DOI: 10.1016/j.ecoenv.2020.110662] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/06/2020] [Accepted: 04/17/2020] [Indexed: 05/15/2023]
Abstract
2, 2', 4, 4'-Tetrabrominated diphenyl ether (PBDE47) is the most abundant homologues in polybrominated diphenyl ethers (PBDEs) and is used widely in daily life as a brominated flame retardant. It has been shown that PBDE47 has neurotoxicity, thyroid toxicity, and also is reported to have reproductive toxicity, which can impair the follicular function of female rats and activate ovarian endoplasmic reticulum stress, leading to ovarian damage. However, the toxicity of PBDE47 to the quality of mammalian oocyte has not been reported. In this study, we reported that PBDE47 exposure affected the mouse ovarian and uterine. We also showed that oocyte number reduced and meiotic maturation competence decreased. Moreover, PBDE47 exposure disrupted actin filaments distribution, and also changed the level of histone methylation. Based on the genome-wide sequencing we showed that PBDE47 altered multiple gene expression in mouse oocytes. PBDE47 exposure caused mitochondria dysfunction, showing with aberrant distribution and mitochondrial membrane potential. In addition, our results suggested that PBDE47 induced early apoptosis, which was caused by oxidative stress, showing with increased ROS level and positive Annexin-V signal. In conclusion, our results indicated that PBDE47 exposure affected the maturation of mouse oocyte via its effects on mitochondria function, ROS level and its related apoptosis.
Collapse
Affiliation(s)
- Ming-Hong Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiao-Han Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yao Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yi Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
10
|
Yang X, Liu P, Cui Y, Xiao B, Liu M, Song M, Huang W, Li Y. Review of the Reproductive Toxicity of T-2 Toxin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:727-734. [PMID: 31895560 DOI: 10.1021/acs.jafc.9b07880] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
T-2 toxin, an inevitable environmental pollutant, is the most toxic type A trichothecene mycotoxin. Reproductive disruption is a key adverse effect of T-2 toxin. Herein, this paper reviews the reproductive toxicity of T-2 toxin and its mechanisms in male and female members of different species. The reproductive toxicity of T-2 toxin is evidenced by decreased fertility, disrupted structures and functions of reproductive organs, and loss of gametogenesis in males and females. T-2 toxin disrupts the reproductive endocrine axis and inhibits reproductive hormone synthesis. Furthermore, exposure to T-2 toxin during pregnancy results in embryotoxicity and the abnormal development of offspring. We also summarize the research progress in counteracting the reproductive toxicity of T-2 toxin. This review provides information toward a comprehensive understanding of the reproductive toxicity mechanisms of T-2 toxin.
Collapse
Affiliation(s)
- Xu Yang
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine , Northeast Agricultural University , 600 Changjiang Road , Xiangfang District, Harbin , Heilongjiang 150030 , People's Republic of China
| | - Pengli Liu
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine , Northeast Agricultural University , 600 Changjiang Road , Xiangfang District, Harbin , Heilongjiang 150030 , People's Republic of China
| | - Yilong Cui
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine , Northeast Agricultural University , 600 Changjiang Road , Xiangfang District, Harbin , Heilongjiang 150030 , People's Republic of China
| | - Bonan Xiao
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine , Northeast Agricultural University , 600 Changjiang Road , Xiangfang District, Harbin , Heilongjiang 150030 , People's Republic of China
| | - Menglin Liu
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine , Northeast Agricultural University , 600 Changjiang Road , Xiangfang District, Harbin , Heilongjiang 150030 , People's Republic of China
| | - Miao Song
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine , Northeast Agricultural University , 600 Changjiang Road , Xiangfang District, Harbin , Heilongjiang 150030 , People's Republic of China
| | - Wanyue Huang
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine , Northeast Agricultural University , 600 Changjiang Road , Xiangfang District, Harbin , Heilongjiang 150030 , People's Republic of China
| | - Yanfei Li
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine , Northeast Agricultural University , 600 Changjiang Road , Xiangfang District, Harbin , Heilongjiang 150030 , People's Republic of China
| |
Collapse
|
11
|
Li L, Yang M, Li C, Yang F, Wang G. Understanding the Toxin Effects of β-Zearalenol and HT-2 on Bovine Granulosa Cells Using iTRAQ-Based Proteomics. Animals (Basel) 2020; 10:ani10010130. [PMID: 31941148 PMCID: PMC7022321 DOI: 10.3390/ani10010130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Zearalenone (ZEA) and T-2 are two important mycotoxins, which have deleterious effects on the health of humans and livestock. ZEA and its derivatives, α-zearalenol and β-zearalenol, disturb the hormonal homeostasis and lead to numerous problems in the reproductive system. The HT-2 toxin, as the primary metabolite of the T-2 toxin, exerts a series of toxic effects on humans and livestock. The T-2 toxin and its metabolite HT-2 toxin induce damages in multiple tissues, which include the reproductive system. However, toxic response profiles of these mycotoxins on bovine ovarian granulosa cells (bGCs) are unclear. In this study, we determined the importance of heat shock proteins, clarified oxidative stress, and the caspase-3 signaling cascade involved in the mycotoxin-treated toxic response. These results could provide new insights for future studies on prevention and treatment of reproductive problems caused by mycotoxins in bovines. Abstract Zearalenone (ZEA) and T-2 are the most common mycotoxins in grains and can enter the animal and human food-chain and cause many health disorders. To elucidate the toxic response profile, we stimulated bovine granulosa cells (GCs) with β-zearalenol or HT-2. Using isobaric tags for relative and absolute quantification (iTRAQ)-based proteomic, 178 and 291 differentially expressed proteins (DEPs, fold change ≥ 1.3 and p-value < 0.05) in β-zearalenol and HT-2 groups were identified, respectively. Among these DEPs, there were 66 common DEPs between β-zearalenol and HT-2 groups. These 66 DEPs were associated with 23 biological processes terms, 14 molecular functions terms, and 19 cellular components terms. Most heat shock proteins (HSPs) were involved in the toxic response. Reactive oxygen species accumulation, the endoplasmic reticulum (ER)-stress related marker molecule (GRP78), and apoptosis were activated. β-zearalenol and HT-2 inhibited oestradiol (E2) production. These results emphasized the important function of HSPs, clarified oxidative stress, and demonstrated the caspase-3 signaling cascade involved in mycotoxin-treated toxic response, along with decreased E2 production. This study offers new insights into the toxicity of β-zearalenol and HT-2 on ovarian granulosa cells.
Collapse
Affiliation(s)
- Lian Li
- Correspondence: ; Tel.: +86-25-8439-5045; Fax: +86-25-8439-5314
| | | | | | | | | |
Collapse
|
12
|
Lan M, Zhang Y, Wan X, Pan MH, Xu Y, Sun SC. Melatonin ameliorates ochratoxin A-induced oxidative stress and apoptosis in porcine oocytes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113374. [PMID: 31672358 DOI: 10.1016/j.envpol.2019.113374] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Melatonin is a hormone which is generated from pineal gland, and it is responsible for the regulation of wake-sleep cycle. Melatonin is a well-known antioxidant and free radical scavenger to protect against multiple type of tissue damage. While ochratoxin A (OTA) is a mycotoxin found widely in contaminated food and foodstuffs, which causes nephrotoxicity, hepatotoxicity, immunotoxicity, and reproductive damage in humans and animals. In present study we report the toxicity of OTA on porcine oocyte quality and the protective effects of melatonin on OTA-exposed oocytes. Using transcriptome analysis our results show that OTA exposure alters the expression of multiple genes in oocytes, indicating its effect on oocyte maturation. The cellular changes following OTA treatment are examined, and the results show that OTA adversely affects oocyte polar body extrusion, which is confirmed by the delay of Cdc2-mediated cell cycle progression. OTA exposure also disrupts meiotic spindle formation, which is confirmed by altered phosphorylated MAPK expression. RNA-seq screening and further fluorescence staining results show that OTA induces aberrant mitochondria distribution and oxidative phosphorylation defects, which then causes oxidative stress, followed by early apoptosis and autophagy. Treatment with melatonin significantly ameliorates oxidative stress and apoptosis, which further protects cell cycle and spindle formation in OTA-exposed oocytes. Collectively, these results show the protective effects of melatonin against defects induced by OTA during porcine meiotic oocyte maturation.
Collapse
Affiliation(s)
- Mei Lan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiang Wan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yao Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
13
|
Nie J, Xiao P, Wang X, Yang X, Xu H, Lu K, Lu S, Liang X. Melatonin prevents deterioration in quality by preserving epigenetic modifications of porcine oocytes after prolonged culture. Aging (Albany NY) 2019; 10:3897-3909. [PMID: 30530915 PMCID: PMC6326688 DOI: 10.18632/aging.101680] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/19/2018] [Indexed: 12/14/2022]
Abstract
Prolonged culture of metaphase II oocytes is an in vitro aging process that compromises oocyte quality. We tested whether melatonin preserves epigenetic modifications in oocytes after prolonged culture. The porcine oocytes were maturated in vitro for 44 h, and then metaphase II oocytes were continuously cultured in medium supplemented with or without melatonin for 24 h. We found that the parthenogenetic blastocyst formation rate of prolonged-culture oocytes was lower than in fresh oocytes. We further observed that methylation at H3K4me2 and H3K27me2 of oocytes enhanced after prolonged culture. However, 5mc fluorescence intensity was lower in prolonged-culture oocytes than in fresh oocytes. Moreover, the promoter of the imprinted gene NNAT exhibited a higher level of DNA methylation in prolonged-culture oocytes than in fresh oocytes, which was associated with a reduced expression level and glucose uptake capability. Conversely, melatonin improved blastocyst formation rate and preserved histone and DNA methylation modifications, as well as NNAT function in the oocytes after prolonged culture. Notably, DNA methyltransferase inhibitor 5-aza significantly attenuated the protective role of melatonin on genomic DNA methylation. In summary, our results revealed that epigenetic modifications are disrupted in oocytes after prolonged culture, but the changes are reversed by melatonin.
Collapse
Affiliation(s)
- Junyu Nie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530004, PR China.,College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Peng Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530004, PR China.,College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Xuefang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530004, PR China.,College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Xiaogan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530004, PR China.,College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Huiyan Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530004, PR China.,College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Kehuan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530004, PR China.,College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Shengsheng Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530004, PR China.,College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Xingwei Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530004, PR China.,College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, PR China
| |
Collapse
|
14
|
HT-2 toxin exposure induces mitochondria dysfunction and DNA damage during mouse early embryo development. Reprod Toxicol 2019; 85:104-109. [DOI: 10.1016/j.reprotox.2019.02.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 11/23/2022]
|
15
|
Huang D, Cui L, Sajid A, Zainab F, Wu Q, Wang X, Yuan Z. The epigenetic mechanisms in Fusarium mycotoxins induced toxicities. Food Chem Toxicol 2019; 123:595-601. [DOI: 10.1016/j.fct.2018.10.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
16
|
Yang S, Zhang H, De Boevre M, Zhang J, Li Y, Zhang S, De Saeger S, Zhou J, Li Y, Sun F. Toxicokinetics of HT-2 Toxin in Rats and Its Metabolic Profile in Livestock and Human Liver Microsomes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8160-8168. [PMID: 29996643 DOI: 10.1021/acs.jafc.8b02893] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The lack of information on HT-2 toxin leads to inaccurate hazard evaluations. In the present study, toxicokinetic studies of HT-2 toxin were investigated following intravenous (iv) and oral administration to rats at dosages of 1.0 mg per kilogram of body weight. After oral administration, HT-2 toxin was not detected in plasma, whereas its hydroxylated metabolite, 3'-OH HT-2 was identified. Following iv administration, HT-2 toxin; its 3'-hydroxylated product; and its glucuronide derivative, 3-GlcA HT-2, were observed in plasma, and the glucuronide conjugate was the predominant metabolite. To explore the missing HT-2 toxin in plasma, metabolic studies of HT-2 toxin in liver microsomes were conducted. Consequently, eight phase I and three phase II metabolites were identified. Hydroxylation, hydrolysis, and glucuronidation were the main metabolic pathways, among which hydroxylation was the predominant one, mediated by 3A4, a cytochrome P450 enzyme. Additionally, significant interspecies metabolic differences were observed.
Collapse
Affiliation(s)
- Shupeng Yang
- Bee Product Quality Supervision and Testing Centre, Ministry of Agriculture; Institute of Apicultural Research, Key Laboratory of Bee Products for Quality and Safety Control , Chinese Academy of Agricultural Sciences , Beijing 100093 , People's Republic of China
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , Ghent 9000 , Belgium
- College of Veterinary Medicine , China Agricultural University , Beijing 100193 , People's Republic of China
| | - Huiyan Zhang
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , Ghent 9000 , Belgium
- College of Veterinary Medicine , China Agricultural University , Beijing 100193 , People's Republic of China
| | - Marthe De Boevre
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , Ghent 9000 , Belgium
| | - Jinzhen Zhang
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , Ghent 9000 , Belgium
| | - Yanshen Li
- College of Life Science , Yantai University , Yantai , Shandong 264005 , People's Republic of China
| | - Suxia Zhang
- College of Veterinary Medicine , China Agricultural University , Beijing 100193 , People's Republic of China
| | - Sarah De Saeger
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , Ghent 9000 , Belgium
| | - Jinhui Zhou
- Bee Product Quality Supervision and Testing Centre, Ministry of Agriculture; Institute of Apicultural Research, Key Laboratory of Bee Products for Quality and Safety Control , Chinese Academy of Agricultural Sciences , Beijing 100093 , People's Republic of China
| | - Yi Li
- Bee Product Quality Supervision and Testing Centre, Ministry of Agriculture; Institute of Apicultural Research, Key Laboratory of Bee Products for Quality and Safety Control , Chinese Academy of Agricultural Sciences , Beijing 100093 , People's Republic of China
| | - Feifei Sun
- Bee Product Quality Supervision and Testing Centre, Ministry of Agriculture; Institute of Apicultural Research, Key Laboratory of Bee Products for Quality and Safety Control , Chinese Academy of Agricultural Sciences , Beijing 100093 , People's Republic of China
- College of Veterinary Medicine , China Agricultural University , Beijing 100193 , People's Republic of China
| |
Collapse
|