1
|
Hao Y, Jiang X, Sun R, Bai Y, Xu C, Song Y, Xia C. Effects of Supplementing Rumen-Protected Glutathione on Lactation Performance, Nutrients, Oxidative Stress, Inflammation, and Health in Dairy Cows During the Transition Period. Vet Sci 2025; 12:84. [PMID: 40005844 PMCID: PMC11860859 DOI: 10.3390/vetsci12020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/09/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Glutathione (GSH), widely present in plant and animal cells and crucial for combating oxidative stress and inflammation, has not been evaluated in dairy cows. This study aims to evaluate the effects of rumen-protected glutathione (RPGSH) supplementation on lactation, nutrient metabolism, oxidative stress, inflammation, and health in transition dairy cows. Forty Holstein dairy cows (2.65 ± 0.78 of parity, 2.81 ± 0.24 of body condition score, 9207.56 ± 1139.18 kg of previous 305-day milk yield, 657.53 ± 55.52 kg of body weight, mean ± SD) were selected from a large cohort of 3215 cows on day 21 before expected calving (day -21 ± 3 d). Cows were randomly stratified into four dietary treatment groups (n = 10 per group): control (basal diet + 0 g/d RPGSH); T1 (basal diet + 1.5 g/d RPGSH); T2 (basal diet + 2 g/d RPGSH); and T3 (basal diet + 3 g/d RPGSH). Supplementation commenced approximately 21 days (±3) prepartum and continued through 21 days postpartum. Blood samples were collected at -21 ± 3, -14 ± 3, -7 ± 3, 0, 7, 14, and 21 d for analysis of serum metabolic parameters related to oxidative stress and inflammation. Milk composition was analyzed from samples collected on days 3, 7, 14, and 21 postpartum. Compared with the control group, supplementation with 2 g/d of RPGSH reduced somatic cell count (p < 0.05) and the incidence of postpartum diseases in dairy cows. No differences were observed among the groups in milk yield, milk fat, protein, lactose, total solids, dry matter intake, or energy-corrected milk. However, fat-corrected milk and feed efficiency were higher in the T2 group compared to the control (p < 0.05). Calcium and phosphorus levels did not differ among the groups. Compared to the control group, cows supplemented with 2 g/d RPGSH had lower β-hydroxybutyrate levels and higher glucose levels on days 14 and 21 postpartum (p < 0.05). From days 14 to 21 postpartum, RPGSH supplementation increased blood GSH, serum catalase, and total antioxidant capacity while reducing malondialdehyde, reactive oxygen species, haptoglobin, cortisol, C-reactive protein, and interleukin-6 levels compared with the control group (p < 0.05). The supplementation of 2 g/d RPGSH showed relatively better effects. RPGSH supplementation at 2 g/d improved lactation performance, nutrient metabolism, oxidative stress, and inflammation status in dairy cows, playing a crucial role in maintaining their health. To our knowledge, this is the first report on the effects of supplementing RPGSH additive in Holstein cows.
Collapse
Affiliation(s)
- Yu Hao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Sartu District, Daqing 163319, China; (Y.H.); (X.J.); (R.S.); (Y.B.)
| | - Xuejie Jiang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Sartu District, Daqing 163319, China; (Y.H.); (X.J.); (R.S.); (Y.B.)
| | - Rui Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Sartu District, Daqing 163319, China; (Y.H.); (X.J.); (R.S.); (Y.B.)
| | - Yunlong Bai
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Sartu District, Daqing 163319, China; (Y.H.); (X.J.); (R.S.); (Y.B.)
| | - Chuang Xu
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100091, China;
| | - Yuxi Song
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Sartu District, Daqing 163319, China; (Y.H.); (X.J.); (R.S.); (Y.B.)
| | - Cheng Xia
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Sartu District, Daqing 163319, China; (Y.H.); (X.J.); (R.S.); (Y.B.)
| |
Collapse
|
2
|
Mirzaei A, Hajimohammadi A, Nasrian A, Nikzad M, Rowshan‐Ghasrodashti A, Nazifi S, Naeini AT. Oxidative Stress Biomarkers and Metabolic Parameters in Healthy Holstein Dairy Cows and Cows With Left Displacement Abomasum During the Transitional Period. Vet Med Sci 2025; 11:e70142. [PMID: 39611386 PMCID: PMC11605477 DOI: 10.1002/vms3.70142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/23/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND During the transitional period, dairy cows experience oxidative stress and are more susceptible to diseases, including left displacement of the abomasum (LDA). OBJECTIVES This study aimed to compare oxidative stress biomarker levels in cows with LDA to those in healthy conditions and investigate the associations between predictive metabolites linked to LDA and oxidative stress biomarkers. METHODS In this case-control study, 400 healthy multiparous Holstein cows were matched for lactation number, milk production and calving date. Blood samples were collected at four time points: 21 and 7 days before, as well as 7 and 21 days after parturition from all animals. During the observation period, seven cows diagnosed with LDA in the main population, and seven healthy cows were randomly selected as controls for the comparison of oxidative stress, liver enzymes and metabolic parameters. Analysis of blood parameters utilized repeated measures ANOVA, and the degree of relationship between oxidative stress biomarkers and other measured parameters was assessed using Pearson correlations. RESULTS The LDA group exhibited significantly higher levels of urea, blood urea nitrogen (BUN), gamma-glutamyl transferase, glucose, cholesterol, triglyceride (TAG), β-hydroxybutyric acid (BHBA), aspartate aminotransferase (AST), sorbitol dehydrogenase, serum amyloid A (SAA), chloride, sodium, potassium, total antioxidant capacity (TAC) and malondialdehyde (MDA) compared to the control cows (p < 0.05). Positive correlations were observed among BUN, glucose, TB, AST, SAA, BHBA, TAG and MDA. Conversely, these parameters displayed negative correlations with TAC. Negative correlations were found among chloride, sodium, potassium, calcium, phosphorus and MDA, whereas positive correlations were observed with TAC. CONCLUSIONS These findings highlight the elevated level of oxidative stress and compromised antioxidant defence in cows with LDA and the intricate interplay among oxidative stress, metabolic parameters and liver enzymes.
Collapse
Affiliation(s)
- Ahmadreza Mirzaei
- Post‐Doctoral Fellow at College of Veterinary MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Ali Hajimohammadi
- Associate Professor of Large Animal Internal MedicineDepartment of Clinical SciencesSchool of Veterinary MedicineShiraz UniversityShirazIran
| | - Amirhossein Nasrian
- Graduated Student of Veterinary MedicineDepartment of Clinical StudiesSchool of Veterinary MedicineShiraz UniversityShirazIran
| | - Mohammad Nikzad
- Resident of Large Animal Internal MedicineDepartment of Clinical SciencesSchool of Veterinary MedicineShiraz UniversityShirazIran
| | - Abbas Rowshan‐Ghasrodashti
- Assistant Professor of Large Animal Internal MedicineDepartment of Clinical StudiesSchool of Veterinary MedicineIslamic Azad UniversityKazerun BranchFarsIran
| | - Saeed Nazifi
- Professor of Clinical PathologyDepartment of Clinical SciencesSchool of Veterinary MedicineShiraz UniversityShirazIran
| | - Aboutorab Tabatabaei Naeini
- Professor of Veterinary Surgery and RadiologyDepartment of Veterinary Surgery and RadiologySchool of Veterinary MedicineShiraz UniversityShirazIran
| |
Collapse
|
3
|
Li CY, Lin WC, Moonmanee T, Chan JPW, Wang CK. The Protective Role of Vitamin E against Oxidative Stress and Immunosuppression Induced by Non-Esterified Fatty Acids in Bovine Peripheral Blood Leukocytes. Animals (Basel) 2024; 14:1079. [PMID: 38612319 PMCID: PMC11011009 DOI: 10.3390/ani14071079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
High levels of non-esterified fatty acids (NEFAs) during the transition period lead to increased oxidative stress and immunosuppression in cows. Feeding them a vitamin-E-supplemented diet reduces reactive oxygen species (ROS) levels in the blood and diminishes immunosuppression in the transition period. However, whether the restoration of immune cell function occurs through the direct action of vitamin E in cells is still a topic that requires further discussion. Therefore, in this experiment, we aimed to investigate the effect of NEFAs on peripheral blood leukocytes (PBLs) and whether vitamin E mitigates the impact of NEFAs. We employed three groups: (1) blank, (2) NEFA only, and (3) pre-culturing with vitamin E before NEFA treatment (VENEFA). In peripheral blood mononuclear cells (PBMCs), there were no differences in vitamin E content among the three groups. However, in the vitamin E pre-treatment group, the vitamin E levels of polymorphonuclear neutrophils (PMNs) were significantly higher than those in the other two groups. NEFA levels increased malondialdehyde (MDA) levels in PBMCs, but pre-treatment with vitamin E reduced accumulation of MDA levels. Regarding the expression of proinflammatory genes, NEFAs increased the expression of interleukin-1β in PBMCs and colony-stimulating factor 2 in PMNs. Vitamin E pre-treatment restored the increase in interleukin-1β levels caused by NEFAs in PBMCs. None of the groups affected the phagocytosis of PMNs. Few studies have confirmed that NEFAs cause oxidative stress in bovine PBLs. In summary, this study found that NEFAs induce oxidative stress in PBLs and alter the expression of inflammation-related genes; meanwhile, vitamin E can reduce some of the effects caused by NEFAs. This result may suggest that vitamin E can assist bovine PBLs in resisting the immune suppression caused by an NEB during the transition period.
Collapse
Affiliation(s)
- Cheng-Yan Li
- Department of Animal Science, National Chung Hsing University, Taichung 402202, Taiwan; (C.-Y.L.); (W.-C.L.)
- The iEGG and Animal Biotechnology Center, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402202, Taiwan
| | - Wei-Chen Lin
- Department of Animal Science, National Chung Hsing University, Taichung 402202, Taiwan; (C.-Y.L.); (W.-C.L.)
- The iEGG and Animal Biotechnology Center, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402202, Taiwan
| | - Tossapol Moonmanee
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
- Functional Feed Innovation Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jacky Peng-Wen Chan
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402202, Taiwan;
| | - Chien-Kai Wang
- Department of Animal Science, National Chung Hsing University, Taichung 402202, Taiwan; (C.-Y.L.); (W.-C.L.)
- The iEGG and Animal Biotechnology Center, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402202, Taiwan
| |
Collapse
|
4
|
Khan MZ, Huang B, Kou X, Chen Y, Liang H, Ullah Q, Khan IM, Khan A, Chai W, Wang C. Enhancing bovine immune, antioxidant and anti-inflammatory responses with vitamins, rumen-protected amino acids, and trace minerals to prevent periparturient mastitis. Front Immunol 2024; 14:1290044. [PMID: 38259482 PMCID: PMC10800369 DOI: 10.3389/fimmu.2023.1290044] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Mastitis, the inflammatory condition of mammary glands, has been closely associated with immune suppression and imbalances between antioxidants and free radicals in cattle. During the periparturient period, dairy cows experience negative energy balance (NEB) due to metabolic stress, leading to elevated oxidative stress and compromised immunity. The resulting abnormal regulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS), along with increased non-esterified fatty acids (NEFA) and β-hydroxybutyric acid (BHBA) are the key factors associated with suppressed immunity thereby increases susceptibility of dairy cattle to infections, including mastitis. Metabolic diseases such as ketosis and hypocalcemia indirectly contribute to mastitis vulnerability, exacerbated by compromised immune function and exposure to physical injuries. Oxidative stress, arising from disrupted balance between ROS generation and antioxidant availability during pregnancy and calving, further contributes to mastitis susceptibility. Metabolic stress, marked by excessive lipid mobilization, exacerbates immune depression and oxidative stress. These factors collectively compromise animal health, productive efficiency, and udder health during periparturient phases. Numerous studies have investigated nutrition-based strategies to counter these challenges. Specifically, amino acids, trace minerals, and vitamins have emerged as crucial contributors to udder health. This review comprehensively examines their roles in promoting udder health during the periparturient phase. Trace minerals like copper, selenium, and calcium, as well as vitamins; have demonstrated significant impacts on immune regulation and antioxidant defense. Vitamin B12 and vitamin E have shown promise in improving metabolic function and reducing oxidative stress followed by enhanced immunity. Additionally, amino acids play a pivotal role in maintaining cellular oxidative balance through their involvement in vital biosynthesis pathways. In conclusion, addressing periparturient mastitis requires a holistic understanding of the interplay between metabolic stress, immune regulation, and oxidative balance. The supplementation of essential amino acids, trace minerals, and vitamins emerges as a promising avenue to enhance udder health and overall productivity during this critical phase. This comprehensive review underscores the potential of nutritional interventions in mitigating periparturient bovine mastitis and lays the foundation for future research in this domain.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Bingjian Huang
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Xiyan Kou
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Yinghui Chen
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Huili Liang
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Qudrat Ullah
- Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera Ismail Khan, Pakistan
| | | | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wenqiong Chai
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| |
Collapse
|
5
|
Jung DJS, Kim DH, Beak SH, Cho IG, Hong SJ, Lee J, Lee JO, Kim HJ, Malekkhahi M, Baik M. Effects of vitamin E and selenium administration on transportation stress in pregnant dairy heifers. J Dairy Sci 2023; 106:9576-9586. [PMID: 37678766 DOI: 10.3168/jds.2023-23463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/21/2023] [Indexed: 09/09/2023]
Abstract
We investigated the effects of road transportation and administration of the vitamin E and selenium (ESe) on circulating cortisol, haptoglobin, blood metabolites, oxidative biomarkers, white blood cell profiles, and behaviors in pregnant dairy heifers. Forty pregnant Holstein heifers were randomly assigned to one of 4 treatments: no transportation and no ESe administration, no transportation and ESe administration, transportation and no administration, and transportation and ESe administration. The ESe (70 IU/kg dry matter feed of dl-α-tocopheryl acetate and 0.3 mg/kg dry matter feed of sodium selenite) was orally delivered once a day from 7 d before transportation to 3 d after transportation. The heifers were transported in trucks designed for cattle transportation. Blood was collected 1 h before transportation, immediately after transportation (IAT), and at 6, 24, and 48 h after transportation. Behaviors were recorded using a video camera for 2 consecutive days after transportation. Transported/non-ESe-administered heifers had greater cortisol at IAT, haptoglobin at 6 and 24 h after transportation, total oxidative status at 6 h after transportation, and nonesterified fatty acid levels, white blood cell numbers, and neutrophil percentages at IAT and 6 h after transportation in the blood than nontransported heifers. Transported/non-ESe-administered heifers had lower total antioxidative status levels at 48 h after transportation and lymphocyte percentages at IAT and 6 h after transportation than nontransported heifers. Lying time was shorter in transported heifers than nontransported/non-ESe-administered heifers. Transported/ESe-administered heifers had lower cortisol, total oxidative status, nonesterified fatty acid levels at IAT, and haptoglobin concentrations at 6 and 24 h after transportation than transported/non-ESe-administered heifers. Transported/ESe-administered heifers had greater total antioxidative status levels at 48 h after transportation than transported/non-ESe-administered heifers. No ESe administration effects were observed for white blood cell number and neutrophil and lymphocyte percentages and lying time. In conclusion, road transportation caused temporary oxidative stress. Administrating ESe partially alleviated the stress, suggesting that ESe administration could be a viable strategy to reduce stress in transported pregnant heifers, providing a novel role of vitamin E and selenium for improving animal welfare.
Collapse
Affiliation(s)
- D J S Jung
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - D H Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - S H Beak
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - I G Cho
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - S J Hong
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - J Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - J O Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - H J Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - M Malekkhahi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - M Baik
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea; Institutes of Green Bio Science Technology, Seoul National University, Pyeongchang-gun, Gangwon 25354, Republic of Korea.
| |
Collapse
|
6
|
Rees G, Brough L, Orsatti GM, Lodge A, Walker S. Do Micronutrient and Omega-3 Fatty Acid Supplements Affect Human Maternal Immunity during Pregnancy? A Scoping Review. Nutrients 2022; 14:367. [PMID: 35057548 PMCID: PMC8781537 DOI: 10.3390/nu14020367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
Maternal dietary micronutrients and omega-3 fatty acids support development of the fetal and neonatal immune system. Whether supplementation is similarly beneficial for the mother during gestation has received limited attention. A scoping review of human trials was conducted looking for evidence of biochemical, genomic, and clinical effects of supplementation on the maternal immune system. The authors explored the literature on PubMed, Cochrane Library, and Web of Science databases from 2010 to the present day using PRISMA-ScR methodology. Full-length human trials in English were searched for using general terms and vitamin A, B12, C, D, and E; choline; iodine; iron; selenium; zinc; and docosahexaenoic/eicosapentaenoic acid. Of 1391 unique articles, 36 were eligible for inclusion. Diverse biochemical and epigenomic effects of supplementation were identified that may influence innate and adaptive immunity. Possible clinical benefits were encountered in malaria, HIV infections, anemia, Type 1 diabetes mellitus, and preventing preterm delivery. Only limited publications were identified that directly explored maternal immunity in pregnancy and the effects of micronutrients. None provided a holistic perspective. It is concluded that supplementation may influence biochemical aspects of the maternal immune response and some clinical outcomes, but the evidence from this review is not sufficient to justify changes to current guidelines.
Collapse
Affiliation(s)
- Gail Rees
- School of Biomedical Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Louise Brough
- School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand
| | | | - Anna Lodge
- St Gilesmedical, London WC2H 8LG, UK; (A.L.); (S.W.)
| | - Steven Walker
- St Gilesmedical, London WC2H 8LG, UK; (A.L.); (S.W.)
| |
Collapse
|
7
|
The Antioxidant Properties of Selenium and Vitamin E; Their Role in Periparturient Dairy Cattle Health Regulation. Antioxidants (Basel) 2021; 10:antiox10101555. [PMID: 34679690 PMCID: PMC8532922 DOI: 10.3390/antiox10101555] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
Dairy cattle experience health risks during the periparturient period. The continuous overproduction of reactive oxygen species (ROS) during the transition from late gestation to peak lactation leads to the development of oxidative stress. Oxidative stress is usually considered the main contributor to several diseases such as retained placenta, fatty liver, ketosis, mastitis and metritis in periparturient dairy cattle. The oxidative stress is generally balanced by the naturally available antioxidant system in the body of dairy cattle. However, in some special conditions, such as the peripariparturient period, the natural antioxidant system of a body is not able to balance the ROS production. To cope with this situation, the antioxidants are supplied to the dairy cattle from external sources. Natural antioxidants such as selenium and vitamin E have been found to restore normal health by minimizing the harmful effects of excessive ROS production. The deficiencies of Se and vitamin E have been reported to be associated with various diseases in periparturient dairy cattle. Thus in the current review, we highlight the new insights into the Se and vitamin E supplementation as antioxidant agents in the health regulation of periparturient dairy cattle.
Collapse
|
8
|
Zubova TV, Pleshkov VA, Smolovskaya OV, Mironov AN, Korobeynikova LN. The use of carotene-containing preparation in cows for the prevention of postpartum complications. Vet World 2021; 14:1059-1066. [PMID: 34220104 PMCID: PMC8243678 DOI: 10.14202/vetworld.2021.1059-1066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/08/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: It is known that metabolic disturbances in the animal body negatively affect parturition, uterine involution, and, ultimately, fertility, especially in cows, during the first insemination. Although the method of diet optimization with the use of a software package results in positive outcomes, adjustment is required for certain groups of animals (e.g., cows), in accordance with the period of the year. Every year, in the spring and autumn, blood is taken from animals to detect metabolic disorders, and then either the diet is balanced or, if the cows lack vitamins and minerals, they are administered to cows parenterally or with food. The aim of this study was to assess the efficiency of using carotene-containing preparation in the prevention of postpartum complications in cows. Materials and Methods: Before the start of the experiment, blood was collected from the animals of the experimental and control groups, with ten animals in each group, and its serum was examined for the presence of carotene. Low carotene content was found in the serum of all animals (from 0.2 to 0.25 mg%) with the norm within the range of 0.40-0.62 mg%. The cows of the experimental group were injected subcutaneously with the carotene-containing preparation 30, 20, and 10 days before the expected calving date at a dose of 10 mL per head. The carotene-containing preparation was a solution of crystalline β-carotene substance in deodorized sunflower oil. Moreover, the share of β-carotene was at least 0.18%. The drug was administered intramuscularly into the rump. Results: In the postpartum period, the retention of the placenta was observed in two animals of the control group. The uterine involution in the cows of the control group was 16.0 (p<0.05) days longer than that in the cows of the experimental group. The duration of placenta separation in the cows of the control group was on average 3.21 h longer (p<0.01) than that in the cows of the experimental group. The period from calving to the introduction of the embryo was 63.17±1.56 days in the control group and 48.3±0.83 days in the experimental group. The survival rate of embryos in the cows of the experimental group was 60%, and the period from the calving date to the introduction of the embryo averaged 48 days, which were 14.9 (p<0.05) days less than that in the cows of the control group. Conclusion: When the carotene-containing preparation was administered in a dose of 10 mL subcutaneously to cows 30, 20, and 10 days before the calving date, the blood carotene content increased, and the duration of the last stage and uterine involution decreased. The period from the calving date to the introduction of the embryo was reduced to 48.3±0.83 days, and the survival rate of embryos was 60%.
Collapse
Affiliation(s)
- Tatyana Vladimirovna Zubova
- Zootechnical Faculty, Federal State Budgetary Educational Institution of Higher Professional Education "Kuzbass State Agricultural Academy", Markovtseva Street, 5, Kemerovo, 650056, Russia
| | - Vladimir Alexandrovich Pleshkov
- Zootechnical Faculty, Federal State Budgetary Educational Institution of Higher Professional Education "Kuzbass State Agricultural Academy", Markovtseva Street, 5, Kemerovo, 650056, Russia
| | - Oksana Vladimirovna Smolovskaya
- Zootechnical Faculty, Federal State Budgetary Educational Institution of Higher Professional Education "Kuzbass State Agricultural Academy", Markovtseva Street, 5, Kemerovo, 650056, Russia
| | - Alexander Nikolaevich Mironov
- Zootechnical Faculty, Federal State Budgetary Educational Institution of Higher Professional Education "Kuzbass State Agricultural Academy", Markovtseva Street, 5, Kemerovo, 650056, Russia
| | - Larisa Nikolaevna Korobeynikova
- Zootechnical Faculty, Federal State Budgetary Educational Institution of Higher Professional Education "Kuzbass State Agricultural Academy", Markovtseva Street, 5, Kemerovo, 650056, Russia
| |
Collapse
|
9
|
Alhussien MN, Tiwari S, Panda BSK, Pandey Y, Lathwal SS, Dang AK. Supplementation of antioxidant micronutrients reduces stress and improves immune function/response in periparturient dairy cows and their calves. J Trace Elem Med Biol 2021; 65:126718. [PMID: 33484976 DOI: 10.1016/j.jtemb.2021.126718] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/09/2020] [Accepted: 01/12/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Periparturient period induces stress in cows which fluctuates hormonal and metabolic function and causes immune suppression. Apart from impairing the health, production, and reproduction of cows, it also influences the well-being of newborn calves by decreasing the colostrum quality. Micronutrients are known for optimal health and production and their effects on parturition stress, immune response in both cow and its calf need to be explored. AIM The aim of this study was to see the effect of oral supplementation of micronutrients during the prepartum period on the health status of crossbred dairy cows and subsequently on their newborn calves. METHODS A total of 42 healthy multiparous cows were selected and randomly divided into five groups with seven cows in each group, i.e. control (Basal Diet, BD), VA group (BD + vitamin A, 105 IU), Zn group (BD + zinc sulphate, 60 ppm), VE group (BD + vitamin E, 2500 IU), and combined supplementation (CS) group (BD + combination of VA, Zn, and VE). The supplements were offered in compounded concentrate DM (100 g) to individual cows once daily before the morning feeding and the remaining portion was incorporated in the TMR. Feeding was started one month before the expected days of calving till calving. Blood samples were collected from cows at days -15, -7, -3, 0, +3, +7, and +15 relative to the day of calving. Blood samples from newborn calves and milk samples of cows were collected at days 0, +3, +7, and +15. Milk somatic cell counts (SCC) were estimated using a cell counter. Cortisol was estimated by ELISA kit in blood and milk plasma of cows and in the blood plasma of their calves. Total immunoglobulins (Ig) were estimated in milk of cows and serum of calves using zinc sulphate turbidity method. Blood neutrophils from cows and calves were studied for phagocytic activity (PA) using nitro blue tetrazolium (NBT) assay.Data were analysed by repeated-measures two-way ANOVA using the mixed procedure of SAS, and the pairwise comparison was performed using a multiple comparison test (Tukey). RESULTS Combined supplementation of micronutrients decreased (P < 0.05) maternal blood plasma (control vs. CS group, 5.98 ± 0.20 vs. 3.86 ± 0.23 ng/mL) and milk plasma (3.96 ± 0.13 vs. 2.71 ± 0.10 ng/mL) cortisol, milk SCC (3.05 ± 0.11 vs. 2.12 ± 0.10 × 105 cells/mL) and increased (P < 0.05) total milk Ig concentration (18.80 ± 0.11 vs. 23.04 ± 0.57 mg/mL) and the PA of blood neutrophils (0.84 ± 0.03 vs. 1.07 ± 0.03). Similarly, lower blood cortisol concentration (9.69 ± 0.35 vs. 6.02 ± 0.18 ng/mL) and higher (P < 0.05) total Ig (23.26 ± 0.11 vs. 30.34 ± 0.70 mg/mL) and PA of blood neutrophils (0.37 ± 0.02 vs. 0.52 ± 0.02) were observed in the calves born to CS group of cows as compared to the control. Highest (P < 0.05) positive effects (lower stress levels and higher immune response) of treatment were noticed in CS group followed by VE group and then Zn group. However, VA group didn't differ from the control group. CONCLUSION Our results indicate that micronutrient interventions during the prepartum period can improve the health status of dairy calves and subsequently the well-being of their calves.
Collapse
Affiliation(s)
- Mohanned Naif Alhussien
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India; Animal Production Division, Agricultural College, Aleppo University, Aleppo, Syrian Arab Republic
| | - Sadhana Tiwari
- Livestock Production & Management Section, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | | | - Yogesh Pandey
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Surender Singh Lathwal
- Livestock Production & Management Section, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Ajay Kumar Dang
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| |
Collapse
|
10
|
The Physiological Roles of Vitamin E and Hypovitaminosis E in the Transition Period of High-Yielding Dairy Cows. Animals (Basel) 2021; 11:ani11041088. [PMID: 33920342 PMCID: PMC8070221 DOI: 10.3390/ani11041088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 01/24/2023] Open
Abstract
Simple Summary In high-yield cows, most production diseases occur during transition periods. Alpha-tocopherol, the most biologically active form of vitamin E, declines in blood and reaches the lowest levels (hypovitaminosis E) around calving. Hypovitaminosis E is associated with the incidence of peripartum diseases. Therefore, many studies which have been published for more than 30 years have investigated the effects of α-tocopherol supplementation. This α-tocopherol deficiency was thought to be caused by complex factors. However, until recently, the physiological factors or pathways underlying hypovitaminosis E in the transition period have been poorly understood. In the last 10 years, the α-tocopherol-related genes expression, which regulate the metabolism, transportation, and tissue distribution of α-tocopherol in humans and rodents, has been reported in ruminant tissues. In this paper, we discuss at least six physiological phenomena that occur during the transition period and may be candidate factors predisposing to a decreased blood α-tocopherol level and hypovitaminosis E with changes in α-tocopherol-related genes expression. Abstract Levels of alpha-tocopherol (α-Toc) decline gradually in blood throughout prepartum, reaching lowest levels (hypovitaminosis E) around calving. Despite numerous reports about the disease risk in hypovitaminosis E and the effect of α-Toc supplementation on the health of transition dairy cows, its risk and supplemental effects are controversial. Here, we present some novel data about the disease risk of hypovitaminosis E and the effects of α-Toc supplementation in transition dairy cows. These data strongly demonstrate that hypovitaminosis E is a risk factor for the occurrence of peripartum disease. Furthermore, a study on the effectiveness of using serum vitamin levels as biomarkers to predict disease in dairy cows was reported, and a rapid field test for measuring vitamin levels was developed. By contrast, evidence for how hypovitaminosis E occurred during the transition period was scarce until the 2010s. Pioneering studies conducted with humans and rodents have identified and characterised some α-Toc-related proteins, molecular players involved in α-Toc regulation followed by a study in ruminants from the 2010s. Based on recent literature, the six physiological factors: (1) the decline in α-Toc intake from the close-up period; (2) changes in the digestive and absorptive functions of α-Toc; (3) the decline in plasma high-density lipoprotein as an α-Toc carrier; (4) increasing oxidative stress and consumption of α-Toc; (5) decreasing hepatic α-Toc transfer to circulation; and (6) increasing mammary α-Toc transfer from blood to colostrum, may be involved in α-Toc deficiency during the transition period. However, the mechanisms and pathways are poorly understood, and further studies are needed to understand the physiological role of α-Toc-related molecules in cattle. Understanding the molecular mechanisms underlying hypovitaminosis E will contribute to the prevention of peripartum disease and high performance in dairy cows.
Collapse
|
11
|
Tejaswi V, Balachander B, Samad HA, Sarkar M, Maurya VP, Singh G. Assessment of heat stress induced alterations in polymorphonuclear (PMN) cell activity in native and crossbred cows. JOURNAL OF APPLIED ANIMAL RESEARCH 2020. [DOI: 10.1080/09712119.2020.1829629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Veligatla Tejaswi
- Division of Physiology & Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | | | - Harry Abdul Samad
- Division of Physiology & Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Mihir Sarkar
- Division of Physiology & Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Vijay Prakash Maurya
- Division of Physiology & Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Gynendra Singh
- Division of Physiology & Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
12
|
Al-Sowayan NS. Possible modulation of nervous tension-induced oxidative stress by vitamin E. Saudi J Biol Sci 2020; 27:2563-2566. [PMID: 32994712 PMCID: PMC7499109 DOI: 10.1016/j.sjbs.2020.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/27/2020] [Accepted: 05/10/2020] [Indexed: 01/14/2023] Open
Abstract
Stress is an unavoidable part of human life that affects a majority of people: In 2018, 55% of Americans reported experiencing stress (Gallup Global Emotions, 2019). Various factors contribute to the emergence of nervous stress among individuals, including environmental, physical, and psychological stimuli. Physical and psychological issues arise as a result of stress, which is the subject of our research study, giving it significant practical value. Here, we have tested the possible correlation between increase in oxidation species and severe psychological issues at a community level. To understand any possible connections between these two parameters, tests were conducted on 200 rats that were divided into three general groups based on the duration of stress exposure. Each group was further divided into five smaller groups with 10–20 rats. Treatments were setup with or without vitamin E with periods of stress immobilization. Samples were then collected to conduct necessary analyses from control, experimental, and treatment groups. Immobilization stress types, i.e., acute and chronic stress, caused noticeably different physiological changes, especially with respect to nature and severity of response. Chronic stress induced different responses depending on the exposure period as well. Furthermore, vitamin E appeared to have a protective role due to its antioxidant nature, which highlights the need for investigations on oxidative stress-related disease treatment and prevention.
Collapse
Affiliation(s)
- Noorah Saleh Al-Sowayan
- Department of Biology, Faculty of Science, Qassim University, P.O. Box 30230, Buraydah 52377, Saudi Arabia
| |
Collapse
|
13
|
Davis TC, White RR. Breeding animals to feed people: The many roles of animal reproduction in ensuring global food security. Theriogenology 2020; 150:27-33. [PMID: 32088028 DOI: 10.1016/j.theriogenology.2020.01.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 02/06/2023]
Abstract
As the population grows and shifts demographically, the resulting increase in demand for beef and milk necessitates improvements in the sustainability of ruminant livestock production systems. Ruminant livestock contribute to ensuring global food security because they have the ability to up-cycle non-human-edible products into meat and milk products with notable nutritional value. However, ruminant livestock also pose a challenge to global food sustainability because they are resource-intensive to produce and contribute substantially to agricultural greenhouse gas emissions. As such, improving environmental impacts of ruminant livestock production globally is an essential goal. There are a number of strategies that can be employed to enhance sustainability of ruminant production systems; however, improving reproductive efficiency is among the more efficient, because an increase in reproductive success will reduce the number of cows needed to produce a target quantity of beef. This reduction in the cow herd size helps limit the number of unproductive animals retained in the herd, thereby reducing the environmental maintenance cost of livestock production. Additionally, proper application of reproductive technologies enables faster and more targeted advances in genetic gains, which can be leveraged to produce phenotypes that are resource-use-efficient and well-adapted to their production environment. Optimizing reproductive efficiency can be accomplished through improved genetic selection for fertility and fecundity; applying more effective use of assisted reproductive technologies; and coupling reproductive and nutritional management to optimize likelihood of reproductive success. Collectively, applying these approaches will be essential when working to ensure ruminant livestock's contribution to global food security.
Collapse
Affiliation(s)
- T C Davis
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, 24060, USA
| | - R R White
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, 24060, USA.
| |
Collapse
|
14
|
Manriquez D, Chen L, Melendez P, Pinedo P. The effect of an organic rumen-protected fat supplement on performance, metabolic status, and health of dairy cows. BMC Vet Res 2019; 15:450. [PMID: 31829187 PMCID: PMC6907230 DOI: 10.1186/s12917-019-2199-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/27/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Negative energy balance during the transition period is a concern for both conventional and certified organic dairy systems. During early lactation, supplemental strategies are used to cope with nutrient deficiencies that are associated with impaired health, production, and reproduction. As organic certified dairies in the United States face restricted access to dietary supplements, the evaluation of products especially formulated for organic production is needed. Our objective was to assess the effect of supplementing 0.45 kg/d of an organic rumen-protected fat (RPF) on health, metabolic status, and productive and reproductive performance of organic certified Holstein cows from 1 to 150 days in milk (DIM). Two-hundred and two cows were enrolled in a randomized blocked controlled trial conducted from January to July 2017 in a certified organic dairy located in Northern Colorado (USA). Two groups were randomly assigned to be individually supplemented with organic RPF (ORG; n = 100) or control pellets (CON; n = 102) once per day, in addition to the total mixed ration (TMR). Outcomes of interest included milk yield (kg/d) and milk components, serum concentration of glucose, and non-esterified fatty acids (NEFA), resumption of cyclicity, time-to-first artificial insemination (AI), conception at first AI, and conception within 150 DIM, disease occurrence, culling, mortality. RESULTS A significant effect for the inclusion of RPF was found in daily milk yield; RPF supplemented cows had greater milk yield (1.6 kg/d) compared to CON cows up to 150 DIM (P = 0.03). During grazing, multiparous (MP) ORG cows had greater milk yield compared to MP CON cows, whereas no effect was found in primiparous (PP) cows. Health outcomes, serum metabolite concentrations, and reproductive performance were not affected by the inclusion of RPF. Body condition loss was smaller in the ORG group up to 80 DIM; however, there was no effect on body condition during the grazing season and in the overall study period. CONCLUSIONS These results indicate that supplementation of RPF increased daily milk yield and prevented body condition loss during at 90 DIM. However, RPF supplementation did not affect health, serum metabolite concentration, milk components, and reproductive outcomes.
Collapse
Affiliation(s)
- Diego Manriquez
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | - Liang Chen
- Aurora Organic Dairy, Platteville, Colorado 80651-9008 USA
| | - Pedro Melendez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602 USA
| | - Pablo Pinedo
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523 USA
| |
Collapse
|
15
|
B. B, Mehrotra S, Veligatla T, Jena D, Ramamoorthy M, Gopi M, Maurya VP, Singh G, Kumar H, Narayanan K. Effect of high-energy diet supplemented with additional copper and zinc during the transition period on oxidative stress and postpartum reproductive performance in the crossbred cows. BIOL RHYTHM RES 2019. [DOI: 10.1080/09291016.2019.1628399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Balamurugan B.
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Sanjeev Mehrotra
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Tejaswai Veligatla
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Dayanidhi Jena
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Muthu Ramamoorthy
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Marappan Gopi
- Division of Avian Physiology and Reproduction, ICAR-Central Avian Research Institute, Bareilly, India
| | - Vijai Prakash Maurya
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Gyanendra Singh
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Harendra Kumar
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Krishnaswamy Narayanan
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
16
|
Surai PF, Kochish II, Fisinin VI, Juniper DT. Revisiting Oxidative Stress and the Use of Organic Selenium in Dairy Cow Nutrition. Animals (Basel) 2019; 9:E462. [PMID: 31331084 PMCID: PMC6680431 DOI: 10.3390/ani9070462] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/16/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023] Open
Abstract
In commercial animals production, productive stress can negatively impact health status and subsequent productive and reproductive performance. A great body of evidence has demonstrated that as a consequence of productive stress, an overproduction of free radicals, disturbance of redox balance/signaling, and oxidative stress were observed. There is a range of antioxidants that can be supplied with animal feed to help build and maintain the antioxidant defense system of the body responsible for prevention of the damaging effects of free radicals and the toxic products of their metabolism. Among feed-derived antioxidants, selenium (Se) was shown to have a special place as an essential part of 25 selenoproteins identified in animals. There is a comprehensive body of research in monogastric species that clearly shows that Se bioavailability within the diet is very much dependent on the form of the element used. Organic Se, in the form of selenomethionine (SeMet), has been reported to be a much more effective Se source when compared with mineral forms such as sodium selenite or selenate. It has been proposed that one of the main advantages of organic Se in pig and poultry nutrition is the non-specific incorporation of SeMet into general body proteins, thus forming an endogenous Se reserve that can be utilized during periods of stress for additional synthesis of selenoproteins. Responses in ruminant species to supplementary Se tend to be much more variable than those reported in monogastric species, and much of this variability may be a consequence of the different fates of Se forms in the rumen following ingestion. It is likely that the reducing conditions found in the rumen are responsible for the markedly lower assimilation of inorganic forms of Se, thus predisposing selenite-fed animals to potential Se inadequacy that may in turn compromise animal health and production. A growing body of evidence demonstrates that organic Se has a number of benefits, particularly in dairy and beef animals; these include improved Se and antioxidant status and better Se transfer via the placenta, colostrum, and milk to the newborn. However, there is a paucity in the data concerning molecular mechanisms of SeMet assimilation, metabolism and selenoprotein synthesis regulation in ruminant animals, and as such, further investigation is required.
Collapse
Affiliation(s)
- Peter F Surai
- Department of Microbiology and Biochemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria.
- Moscow State Academy of Veterinary Medicine and Biotechnology Named after K.I. Skryabin, 109472 Moscow, Russia.
- Department of Animal Nutrition, Faculty of Agricultural and Environmental Sciences, Szent Istvan University, H-2103 Godollo, Hungary.
| | - Ivan I Kochish
- Moscow State Academy of Veterinary Medicine and Biotechnology Named after K.I. Skryabin, 109472 Moscow, Russia
| | - Vladimir I Fisinin
- All-Russian Institute of Poultry Husbandry, 141311 Sergiev Posad, Russia
| | - Darren T Juniper
- Animal, Dairy, Food Chain Sciences, School of Agriculture, Policy and Development, University of Reading, Earley Gate, Reading RG6 6AR, UK
| |
Collapse
|
17
|
Zhao W, Chen X, Xiao J, Chen XH, Zhang XF, Wang T, Zhen YG, Qin GX. Prepartum body condition score affects milk yield, lipid metabolism, and oxidation status of Holstein cows. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 32:1889-1896. [PMID: 31010972 PMCID: PMC6819678 DOI: 10.5713/ajas.18.0817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/22/2019] [Indexed: 12/18/2022]
Abstract
Objective This study aimed to investigate the effects of prepartum body condition score (BCS) on the milk yield, lipid metabolism, and oxidative status of Holstein cows. Methods A total of 112 multiparous Holstein cows were divided into 4 groups according to the BCS at 21 days before calving: medium BCS (3.0~3.25, MBCS), high BCS (3.5~3.75, HBCS), higher BCS (4.0~4.25, HerBCS), and highest BCS (4.5~5.0, HestBCS). Blood samples were collected on 21, 14, and 7 days before calving (precalving), on the calving day (calving), and on 7, 14, and 21 days after calving (postcalving). The indices of lipid metabolism and oxidative status were analyzed using bovine-specific ELISA kit. Colostrum were taken after calving and analyzed by a refractometer and milk analyzer. The individual milk yield was recorded every 3 days. Results The density and levels of immune globulin and lactoprotein of colostrum from Holstein cows in the HestBCS group were the highest (p<0.05). These animals not only had the highest (p<0.05) levels of serum non-esterified fatty acids and beta-hydroxybutyrate, but also had the highest (p<0.05) levels of malondialdehyde, superoxide dismutase, catalase, vitamin A, and vitamin E. In addition, greater (p<0.05) BCS loss was observed in the HestBCS cows. Conclusion This study demonstrates that the milk yield, lipid metabolism, and oxidative status of Holstein cows are related to prepartum BCS and BCS loss during the transition period. HestBCS cows are more sensitive to oxidative stress and suffer greater loss of BCS after calving, whereas the MBCS animals had better milk yield performance.
Collapse
Affiliation(s)
- Wei Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.,JLAU-Borui Dairy Science and Technology R&D Centre of Jilin Agricultural University, Changchun 130118, China
| | - Xue Chen
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.,JLAU-Borui Dairy Science and Technology R&D Centre of Jilin Agricultural University, Changchun 130118, China
| | - Jun Xiao
- JLAU-Borui Dairy Science and Technology R&D Centre of Jilin Agricultural University, Changchun 130118, China
| | - Xiao Hui Chen
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xue Feng Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.,JLAU-Borui Dairy Science and Technology R&D Centre of Jilin Agricultural University, Changchun 130118, China.,Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.,Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Jilin Agricultural University, Changchun 130118, China
| | - Tao Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.,JLAU-Borui Dairy Science and Technology R&D Centre of Jilin Agricultural University, Changchun 130118, China.,Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.,Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Jilin Agricultural University, Changchun 130118, China
| | - Yu Guo Zhen
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.,JLAU-Borui Dairy Science and Technology R&D Centre of Jilin Agricultural University, Changchun 130118, China.,Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.,Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Jilin Agricultural University, Changchun 130118, China
| | - Gui Xin Qin
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.,Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.,Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
18
|
Luo ZZ, Shen LH, Jiang J, Huang YX, Bai LP, Yu SM, Yao XP, Ren ZH, Yang YX, Cao SZ. Plasma metabolite changes in dairy cows during parturition identified using untargeted metabolomics. J Dairy Sci 2019; 102:4639-4650. [PMID: 30827559 DOI: 10.3168/jds.2018-15601] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 01/10/2019] [Indexed: 12/11/2022]
Abstract
The metabolic responses of cows undergo substantial changes during the transition from late pregnancy to early lactation. However, the molecular mechanisms associated with these changes in physiological metabolism have not been clearly elucidated. The objective of this study was to investigate metabolic changes in transition cows from the perspective of plasma metabolites. Plasma samples collected from 24 multiparous dairy cows on approximately d 21 prepartum and immediately postpartum were analyzed using ultra-high-performance liquid chromatography/time-of-flight mass spectrometry in positive and negative ion modes. In conjunction with multidimensional statistical methods (principal component analysis and orthogonal partial least squares discriminant analysis), differences in plasma metabolites were identified using the t-test and fold change analysis. Sixty-seven differential metabolites were identified consisting of AA, lipids, saccharides, and nucleotides. The levels of 32 plasma metabolites were significantly higher and those of 35 metabolites significantly lower after parturition than on d 21 prepartum. Pathway analysis indicated that the metabolites that increased from late pregnancy to early lactation were primarily involved in lipid metabolism and energy metabolism, whereas decreased metabolites were related to AA metabolism.
Collapse
Affiliation(s)
- Z Z Luo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - L H Shen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - J Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Y X Huang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - L P Bai
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - S M Yu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - X P Yao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Z H Ren
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Y X Yang
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - S Z Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
19
|
Kuhn MJ, Mavangira V, Gandy JC, Sordillo LM. Production of 15-F 2t-isoprostane as an assessment of oxidative stress in dairy cows at different stages of lactation. J Dairy Sci 2018; 101:9287-9295. [PMID: 30077444 DOI: 10.3168/jds.2018-14669] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/08/2018] [Indexed: 01/13/2023]
Abstract
Oxidative stress contributes to dysfunctional immune responses and predisposes dairy cattle to several metabolic and inflammatory-based diseases. Although the negative effects of oxidative stress on transition cattle are well established, biomarkers that accurately measure oxidative damage to cellular macromolecules are not well defined in veterinary medicine. Measuring 15-F2t-isoprostane, a lipid peroxidation product, is the gold standard biomarker for quantifying oxidative stress in human medicine. The aim of our study was to determine whether changes in 15-F2t-isoprostane concentrations in plasma and milk could accurately reflect changes in oxidant status during different stages of lactation. Using liquid chromatography-tandem mass spectrometry, 15-F2t-isoprostane concentrations were quantified in milk and plasma of 12 multiparous Holstein-Friesian cows that were assigned to 3 different sampling periods, including the periparturient period (1-2 d in milk; n = 4), mid lactation (80-84 d in milk; n = 4), and late lactation (183-215 d in milk; n = 4). Blood samples also were analyzed for indicators of oxidant status, inflammation, and negative energy balance. Our data revealed that 15-F2t-isoprostane concentrations changed at different stages of lactation and coincided with changes in other gauges of oxidant status in both plasma and milk. Interestingly, milk 15-F2t-isoprostane concentrations and other indices of oxidant status did not follow the same trends as plasma values at each stage of lactation. Indeed, during the periparturient period, systemic 15-F2t-isoprostane increased significantly accompanied by an increase in the systemic oxidant status index. Milk 15-F2t-isoprostane was significantly decreased during the periparturient period compared with other lactation stages in conjunction with a milk oxidant status index that trended lower during this period. The results from this study indicate that changes in 15-F2t-isoprostane concentrations in both milk and plasma may be strong indicators of an alteration in redox status both systemically and within the mammary gland.
Collapse
Affiliation(s)
- Matthew J Kuhn
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - Vengai Mavangira
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - Jeffery C Gandy
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - Lorraine M Sordillo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824.
| |
Collapse
|