1
|
Gil MA, Cambra JM, Rodriguez-Martinez H, Cuello C, Parrilla I, Martinez EA. In-depth proteome characterization of endometrium and extraembryonic membranes during implantation in pig. J Anim Sci Biotechnol 2024; 15:43. [PMID: 38468318 DOI: 10.1186/s40104-024-01002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/24/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Proteome characterization of the porcine endometrium and extraembryonic membranes is important to understand mother-embryo cross-communication. In this study, the proteome of the endometrium and chorioallantoic membrane was characterized in pregnant sows (PS) during early gestation (d 18 and 24 of gestation) and in the endometrium of non-pregnant sows (NPS) during the same days using LC-MS/MS analysis. The UniProtKB database and ClueGO were used to obtain functional Gene Ontology annotations and biological and functional networks, respectively. RESULTS Our analysis yielded 3,254 and 3,457 proteins identified in the endometrium of PS and NPS, respectively; of these, 1,753 being common while 1,501 and 1,704 were exclusive to PS and NPS, respectively. In addition, we identified 3,968 proteins in the extraembryonic membranes of PS. Further analyses of function revealed some proteins had relevance for the immune system process and biological adhesion in endometrium while the embryonic chorion displayed abundance of proteins related to cell adhesion and cytoskeletal organization, suggesting they dominated the moment of endometrial remodeling, implantation and adhesion of the lining epithelia. Data are available via ProteomeXchange with identifier PXD042565. CONCLUSION This is the first in-depth proteomic characterization of the endometrium and extraembryonic membranes during weeks 3 to 4 of gestation; data that contribute to the molecular understanding of the dynamic environment during this critical period, associated with the majority of pregnancy losses.
Collapse
Affiliation(s)
- Maria A Gil
- Department of Medicine and Animal Surgery, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| | | | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Linköping University, Linköping, Sweden
| | - Cristina Cuello
- Department of Medicine and Animal Surgery, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| | - Inmaculada Parrilla
- Department of Medicine and Animal Surgery, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.
- Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Murcia, Spain.
| | - Emilio A Martinez
- Department of Medicine and Animal Surgery, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| |
Collapse
|
2
|
Mulligan BP, Skidmore JA. A comparison of culture and cooling for the short term preservation of in vivo derived dromedary camel embryos of varying morphological quality. Theriogenology 2023; 210:28-33. [PMID: 37467696 DOI: 10.1016/j.theriogenology.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
Despite recent advancements in the cryopreservation of dromedary camel embryos, widespread application of the technique is still limited by the need for specialised vitrification equipment and supplies. Temporary, liquid-phase embryo storage methods provide a useful tool for short-term preservation of camel embryos. In the current study, we compared the use of in vitro embryo culture with cold liquid storage in order to maintain both high- (Grade 1- Excellent and 2-Good) and low- (Grade 3- Moderate and 4-Poor) morphological grade Day-7 dromedary camel embryos in vitro for up to 3 days. Embryos were either cooled and placed in Hams-F10 medium supplemented with HEPES and 10% FBS and then kept at 4 °C; or placed in Hams-F10 supplemented with sodium bicarbonate and 10% FBS and then cultured in a humidified atmosphere of 6% CO2 at 37 °C before being assessed for viability at 24 h. In high-morphological grade embryos, both cold storage and culture supported 100% viability (maintenance of normal morphology) over this period (Cooled n = 22, Cultured n = 20). In low-morphological grade embryos, culture supported higher viability (16/18, 88.9%) than did cooling (4/18, 22.2%). We then evaluated the effect of up to 3 days of cold storage or culture on embryo morphological grade, diameter, and developmental competence following embryo transfer. High-grade embryos were divided between culture and cold storage; low-grade embryos were evaluated only after culture. Over 3 days of culture, both high- and low-grade embryos tended to either maintain or improve upon their initial morphological score (P < 0.05) and increased in diameter (P < 0.001). Embryos subjected to cooling tended to have reduced morphological scores by 48 h of storage and decreased in diameter by 72 h (P < 0.05). No significant influence of storage method (cooling vs. culture), duration (24-72 h), or embryo grade (high vs low) was observed on pregnancy establishment at Day-60 (22.2%-57.2% pregnancy rates for all treatments). Overall, rates of pregnancy establishment were similar for transferred cultured (n = 45) and cooled (n = 45) embryos (pregnancy rates at Day 18, 48% vs 51.1%; at Day 60, 37.7% vs 37.7%). Rates of embryonic loss also were similar (22.7% vs 26%). In conclusion, whilst similar rates of pregnancy and pregnancy loss were observed following the transfer of both cooled and cultured embryos held in vitro for up to 3 days, amongst the two methods, only embryo culture appears to provide a means of effectively preserving Day- 7 dromedary camel embryos with reduced morphological values in vitro. Considering these embryos appear to show poor tolerance to the cooling procedure and are unlikely candidates for vitrification, embryo culture may provide an effective method for deriving pregnancies from low-morphological grade embryos when immediate transfer is not possible on the day of flushing.
Collapse
Affiliation(s)
- B P Mulligan
- Camel Reproduction Centre, Dubai, United Arab Emirates.
| | - J A Skidmore
- Camel Reproduction Centre, Dubai, United Arab Emirates
| |
Collapse
|
3
|
Haug LM, Jochems R, Gaustad AH, Kommisrud E, Myromslien FD, Grindflek E, Alm-Kristiansen AH. Liquid storage of porcine in vitro-produced blastocysts; a practical approach for short storage. ZYGOTE 2023; 31:441-450. [PMID: 37288532 DOI: 10.1017/s0967199423000308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Commercial application of embryo transfer in pig breeding is dependent on the storage of embryos. The aim of this study was to assess the embryo quality of in vitro-produced blastocysts after 3 h liquid storage at 37°C in CO2-free medium by evaluating morphology, in vitro developmental capacity and apoptosis. Blastocysts at days 5 and 6 post-fertilization were randomly allocated to the storage group (HEPES-buffered NCSU-23 medium including bovine serum albumin in a portable embryo transport incubator at 37°C) or a control group (porcine blastocyst medium in a conventional culture incubator). Thereafter, blastocysts were evaluated for morphology and stained to assess apoptosis straight after the 3 h storage period or after a further 24 h conventional incubation. There was no significant difference between the storage and control group after 3 h storage and the further 24 h conventional incubation for any of the parameters, nor for apoptosis straight after the 3 h storage. Embryos that reached the blastocyst stage at day 5 showed less apoptosis (6.6% vs 10.9%, P = 0.01) and a trend for a higher rate of developmental capacity (70.6% vs 51.5%, P = 0.089) than embryos reaching the blastocyst stage on day 6. In conclusion, in vitro-produced porcine blastocysts can be stored for 3 h at physiological temperature in transportable incubators using a CO2-independent medium without compromising quality.
Collapse
Affiliation(s)
- Linda Marijke Haug
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | | | | | - Elisabeth Kommisrud
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | | | | | | |
Collapse
|
4
|
Gonzalez-Ramiro H, Gil MA, Cuello C, Cambra JM, Gonzalez-Plaza A, Vazquez JM, Vazquez JL, Rodriguez-Martinez H, Lucas-Sanchez A, Parrilla I, Martinez CA, Martinez EA. The Use of a Brief Synchronization Treatment after Weaning, Combined with Superovulation, Has Moderate Effects on the Gene Expression of Surviving Pig Blastocysts. Animals (Basel) 2023; 13:ani13091568. [PMID: 37174605 PMCID: PMC10177444 DOI: 10.3390/ani13091568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
The combination of estrus synchronization and superovulation (SS) treatments causes alterations in ovarian and endometrial gene expression patterns, resulting in abnormal follicle and oocyte growth, fertilization, and embryo development. However, the impact of combined SS treatments on the transcriptome of the surviving embryos remains unidentified. In this study, we examined gene expression changes in day 6 blastocysts that survived a brief regimen of synchronization treatment combined with superovulation. The sows were included in one of three groups: SS7 group (n = 6), sows were administered Altrenogest (ALT) 7 days from the day of weaning and superovulated with eCG 24 h after the end of ALT treatment and hCG at the onset of estrus; SO group (n = 6), ALT nontreated sows were superovulated with eCG 24 h postweaning and hCG at the onset of estrus; control group (n = 6), weaned sows displaying natural estrus. Six days after insemination, the sows underwent a surgical intervention for embryo collection. Transcriptome analysis was performed on blastocyst-stage embryos with good morphology. Differentially expressed genes (DEGs) between groups were detected using one-way ANOVA with an un-adjusted p-value < 0.05 and a fold change </> 1.5. The effect of SO treatment on the number of altered pathways and DEGs within each pathway was minimal. Only four pathways were disrupted comprising only a total of four altered transcripts, which were not related to reproductive functions or embryonic development. On the other hand, the surviving blastocysts subjected to SS7 treatments exhibited moderate gene expression changes in terms of DEGs and fold changes, with seven pathways disrupted containing a total of 10 transcripts affected. In this case, the up-regulation of certain pathways, such as the metabolic pathway, with two up-regulated genes associated with reproductive functions, namely RDH10 and SPTLC2, may suggest suboptimal embryo quality, while the down-regulation of others, such as the glutathione metabolism pathway, with down-regulated genes related to cellular detoxification of reactive oxygen species, namely GSTK1 and GSTO1, could depress the embryos' response to oxidative stress, thereby impairing subsequent embryo development. The gene expression changes observed in the present study in SS7 embryos, along with previous reports indicating SS7 can negatively affect fertilization, embryo production, and reproductive tract gene expression, make its use in embryo transfer programs unrecommendable.
Collapse
Affiliation(s)
- Henar Gonzalez-Ramiro
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, University of Murcia, 30100 Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Campus de Ciencias de la Salud, 30120 Murcia, Spain
- Department of Research and Development, Grupo Agropor I+D+I, AIE, 30565 Murcia, Spain
| | - Maria A Gil
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, University of Murcia, 30100 Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Cristina Cuello
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, University of Murcia, 30100 Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Josep M Cambra
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, University of Murcia, 30100 Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Alejandro Gonzalez-Plaza
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, University of Murcia, 30100 Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Juan M Vazquez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, University of Murcia, 30100 Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Jose L Vazquez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, University of Murcia, 30100 Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, 58185 Linköping, Sweden
| | | | - Inmaculada Parrilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, University of Murcia, 30100 Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Cristina A Martinez
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA-CSIC), 28040 Madrid, Spain
| | - Emilio A Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, University of Murcia, 30100 Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| |
Collapse
|
5
|
Gonzalez-Plaza A, Cambra JM, Parrilla I, Gil MA, Martinez EA, Martinez CA, Cuello C. The Open Cryotop System Is Effective for the Simultaneous Vitrification of a Large Number of Porcine Embryos at Different Developmental Stages. Front Vet Sci 2022; 9:936753. [PMID: 35812891 PMCID: PMC9257686 DOI: 10.3389/fvets.2022.936753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/02/2022] [Indexed: 11/24/2022] Open
Abstract
The Superfine Open Pulled Straw (SOPS) system is the most commonly used method for vitrification of pig embryos. However, this system only allows the vitrification of four to seven embryos per straw. In this study, we investigated the effectiveness of the open (OC) and closed (CC) Cryotop® systems to simultaneously vitrify a larger number of porcine embryos. Morulae, early blastocysts and full blastocysts were vitrified with the open Cryotop® (n = 250; 20 embryos per device) system, the closed Cryotop® (n = 158; 20 embryos per device) system and the traditional superfine open pulled straw (SOPS; n = 241; 4–7 embryos per straw) method. Fresh embryos from each developmental stage constituted the control group (n = 132). Data expressed as percentages were compared with the Fisher's exact test. The Kruskal-Wallis test was used to analyze the effect of the different vitrification systems on the embryo quality parameters and two-by-two comparisons were accomplished with the Mann-Whitney U test. Differences were considered statistically significant when p < 0.05. Vitrified and control embryos were incubated for 24 h and examined for viability and quality. At the warming step, the embryo recovery rate for the CC system was 51%, while all embryos were recovered when using OC and SOPS. There were no differences between the vitrification and control groups in the postwarming viability of full blastocysts. In contrast, morulae and early blastocysts that were vitrified-warmed with the SOPS system had lower viability (p < 0.01) compared to those from the OC, CC and control groups. The embryonic viability was similar between the OC and control groups, regardless of the developmental stage considered. Moreover, the embryos from the OC group had comparable total cell number and cells from the inner cell mass and apoptotic index than the controls. In conclusion, the OC system is suitable for the simultaneous vitrification of 20 porcine embryos at different developmental stages and provides comparable viability and quality results to fresh embryos subjected to 24 h of in vitro culture.
Collapse
Affiliation(s)
- Alejandro Gonzalez-Plaza
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (CMN), University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Josep M. Cambra
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (CMN), University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Inmaculada Parrilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (CMN), University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Maria A. Gil
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (CMN), University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Emilio A. Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (CMN), University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Cristina A. Martinez
- Department of Biomedical and Clinical Sciences (BKV), Division of Children's and Women's Health/Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
- *Correspondence: Cristina A. Martinez
| | - Cristina Cuello
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (CMN), University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
- Cristina Cuello
| |
Collapse
|
6
|
Exogenous Melatonin in the Culture Medium Does Not Affect the Development of In Vivo-Derived Pig Embryos but Substantially Improves the Quality of In Vitro-Produced Embryos. Antioxidants (Basel) 2022; 11:antiox11061177. [PMID: 35740074 PMCID: PMC9220299 DOI: 10.3390/antiox11061177] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023] Open
Abstract
Cloned and transgenic pigs are relevant human disease models and serve as potential donors for regenerative medicine and xenotransplantation. These technologies demand oocytes and embryos of good quality. However, the current protocols for in vitro production (IVP) of pig embryos give reduced blastocyst efficiency and embryo quality compared to in vivo controls. This is likely due to culture conditions jeopardizing embryonic homeostasis including the effect of reactive oxygen species (ROS) influence. In this study, the antioxidant melatonin (1 nM) in the maturation medium, fertilization medium, or both media was ineffective in enhancing fertilization or embryonic development parameters of in vitro fertilized oocytes. Supplementation of melatonin in the fertilization medium also had no effect on sperm function. In contrast, the addition of melatonin to the embryo culture medium accelerated the timing of embryonic development and increased the percentages of cleaved embryos and presumed zygotes that developed to the blastocyst stage. Furthermore, it increased the number of inner mass cells and the inner mass cell/total cell number ratio per blastocyst while increasing intracellular glutathione and reducing ROS and DNA damage levels in embryos. Contrarily, the addition of melatonin to the embryo culture medium had no evident effect on in vivo-derived embryos, including the developmental capacity and the quality of in vivo-derived 4-cell embryos or the percentage of genome-edited in vivo-derived zygotes achieving the blastocyst stage. In conclusion, exogenous melatonin in the embryo culture medium enhances the development and quality of in vitro-derived embryos but not in in vivo-derived embryos. Exogenous melatonin is thus recommended during embryo culture of oocytes matured and fertilized in vitro for improving porcine IVP efficiency.
Collapse
|
7
|
Lin Q, Le QA, Takebayashi K, Hirata M, Tanihara F, Sawamoto O, Kikuchi T, Otoi T. Short-term preservation of porcine zygotes at ambient temperature using a chemically defined medium. Anim Sci J 2022; 93:e13711. [PMID: 35373427 DOI: 10.1111/asj.13711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/10/2022] [Accepted: 03/18/2022] [Indexed: 11/27/2022]
Abstract
We aimed to develop a simple method for the short-term preservation of in vitro-produced porcine zygotes at 25°C for up to 2 days. Firstly, we evaluated the efficiency of three storage solutions to preserve porcine zygotes at 25°C for 24 h. Two of these were commercially available defined media for cell storage (Cell-W and Cell-S), and the third was fetal bovine serum (FBS). Thereafter, we examined the effects of storing the zygotes in the Cell-W solution for 24-72 h at 25°C. The Cell-W solution was the most efficient for 24 h storage of porcine zygotes at 25°C, with no apparent effects on blastocyst quality. However, short-term storage of porcine zygotes for 24 h reduced the blastocyst formation rate compared with the fresh control group. As storage duration increased from 24 to 48 or 72 h, blastocyst formation rates were significantly decreased from 11.3% to 4.4% and 0%, respectively. In conclusion, during zygote storage, the developmental competence to the blastocyst stage decreased with time. Storage of zygotes in chemically defined media did not affect blastocyst quality, but the storage in 100% serum had an adverse effect on developing embryos causing apoptosis.
Collapse
Affiliation(s)
- Qingyi Lin
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan.,Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Quynh Anh Le
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan.,Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Koki Takebayashi
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan.,Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Maki Hirata
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan.,Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Fuminori Tanihara
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Osamu Sawamoto
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc., Tokushima, Japan
| | - Takeshi Kikuchi
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc., Tokushima, Japan
| | - Takeshige Otoi
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan.,Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| |
Collapse
|
8
|
Lin Q, Le QA, Takebayashi K, Hirata M, Tanihara F, Thongkittidilok C, Sawamoto O, Kikuchi T, Otoi T. Viability and developmental potential of porcine blastocysts preserved for short term in a chemically defined medium at ambient temperature. Reprod Domest Anim 2022; 57:556-563. [DOI: 10.1111/rda.14095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Indexed: 10/19/2022]
Affiliation(s)
- Qingyi Lin
- Bio‐Innovation Research Center Tokushima University Tokushima Japan
- Faculty of Bioscience and Bioindustry Tokushima University Tokushima Japan
| | - Quynh Anh Le
- Bio‐Innovation Research Center Tokushima University Tokushima Japan
- Faculty of Bioscience and Bioindustry Tokushima University Tokushima Japan
| | - Koki Takebayashi
- Bio‐Innovation Research Center Tokushima University Tokushima Japan
- Faculty of Bioscience and Bioindustry Tokushima University Tokushima Japan
| | - Maki Hirata
- Bio‐Innovation Research Center Tokushima University Tokushima Japan
- Faculty of Bioscience and Bioindustry Tokushima University Tokushima Japan
| | - Fuminori Tanihara
- Faculty of Bioscience and Bioindustry Tokushima University Tokushima Japan
| | - Chommanart Thongkittidilok
- Bio‐Innovation Research Center Tokushima University Tokushima Japan
- Faculty of Bioscience and Bioindustry Tokushima University Tokushima Japan
| | - Osamu Sawamoto
- Research and Development Center Otsuka Pharmaceutical Factory, Inc Naruto Tokushima Japan
| | - Takeshi Kikuchi
- Research and Development Center Otsuka Pharmaceutical Factory, Inc Naruto Tokushima Japan
| | - Takeshige Otoi
- Bio‐Innovation Research Center Tokushima University Tokushima Japan
- Faculty of Bioscience and Bioindustry Tokushima University Tokushima Japan
| |
Collapse
|
9
|
Gonzalez-Ramiro H, Cuello C, Cambra JM, Gonzalez-Plaza A, Vazquez JM, Vazquez JL, Rodriguez-Martinez H, Gil MA, Lucas-Sanchez A, Parrilla I, Martinez EA. A Short-Term Altrenogest Treatment Post-weaning Followed by Superovulation Reduces Pregnancy Rates and Embryo Production Efficiency in Multiparous Sows. Front Vet Sci 2021; 8:771573. [PMID: 34869743 PMCID: PMC8637542 DOI: 10.3389/fvets.2021.771573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Although embryo transfer (ET) is a biotechnology ready for the swine industry, there are factors to be solved, the availability of embryo donors as one. Multiparous sows as donors ought to be considered since weaning is a natural and efficient method for estrus synchronization. In addition, superovulation treatments at weaning are effective in increasing the efficiency of donor embryo production. However, ET programs typically require more donors than those available from a single weaning, imposing grouping several weanings to establish a batch for ET. Since short-term administration of Altrenogest is effective in delaying estrus after weaning without effects on ovulation and embryo development, we investigated how Altrenogest combined with superovulation would affect reproductive parameters and embryo quality and quantity of weaned multiparous donor sows. The sows were administered Altrenogest from the day of weaning for 14 (SS-14 group; N = 26), 7 (SS-7 group; N = 31) and 4 (SS-4 group; N = 32) days. The sows were superovulated with eCG 24 h after the last administration of Altrenogest and with hCG at the onset of estrus. Sows not treated with Altrenogest that were superovulated with eCG 24 h post-weaning and hCG at the onset of estrus (SC group; N = 37) and sows with natural estrus after weaning (C group; N = 34) were used as control groups. The percentage of sows showing estrus within 10 days was not affected by the treatment, but the interval from Altrenogest withdrawal to estrus was longer (P < 0.05) in the SS groups than the interval from weaning to estrus in the controls. SS treatments increased (P < 0.05) the percentage of sows with ovarian cysts and the development of polycystic ovaries. The pregnancy and the fertilization rates, and the overall embryo production efficiency were also negatively affected by the SS treatments (P < 0.05). Interestingly, almost 70% of the structures classified as unfertilized oocytes or degenerated embryos in sows from the SS groups were immature oocytes. In conclusion, although superovulation of weaned sows was highly efficient, short-term administration of Altrenogest in combination with superovulation had negative effects on most of the reproductive parameters assessed, particularly affecting the overall efficiency of pregnancy and embryo production.
Collapse
Affiliation(s)
- Henar Gonzalez-Ramiro
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, Institute for Biomedical Research of Murcia, University of Murcia, Murcia, Spain.,Department of Research and Development, Grupo Agropor I+D+I, AIE, Murcia, Spain
| | - Cristina Cuello
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, Institute for Biomedical Research of Murcia, University of Murcia, Murcia, Spain
| | - Josep M Cambra
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, Institute for Biomedical Research of Murcia, University of Murcia, Murcia, Spain
| | - Alejandro Gonzalez-Plaza
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, Institute for Biomedical Research of Murcia, University of Murcia, Murcia, Spain
| | - Juan M Vazquez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, Institute for Biomedical Research of Murcia, University of Murcia, Murcia, Spain
| | - Jose L Vazquez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, Institute for Biomedical Research of Murcia, University of Murcia, Murcia, Spain
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Maria A Gil
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, Institute for Biomedical Research of Murcia, University of Murcia, Murcia, Spain
| | | | - Inmaculada Parrilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, Institute for Biomedical Research of Murcia, University of Murcia, Murcia, Spain
| | - Emilio A Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, Institute for Biomedical Research of Murcia, University of Murcia, Murcia, Spain
| |
Collapse
|
10
|
Riera FL, Roldán JE, Espinosa JM, Fernandez JE, Ortiz I, Hinrichs K. Application of embryo biopsy and sex determination via polymerase chain reaction in a commercial equine embryo transfer program in Argentina. Reprod Fertil Dev 2020; 31:1917-1925. [PMID: 31656221 DOI: 10.1071/rd19228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/17/2019] [Indexed: 11/23/2022] Open
Abstract
Embryo biopsy for fetal sexing has clinical application, but few reports are available of its use within an active embryo transfer program. We evaluated results on biopsy of 459 embryos over one breeding season. There were no significant differences in pregnancy rate between biopsied and non-biopsied embryos (72% vs 73%) or for biopsied embryos recovered at the centre (73%) compared with those shipped overnight (72%). However, the pregnancy rate decreased significantly in shipped embryos biopsied ≥20h after collection. Overall, 86% of biopsies provided a sex diagnosis. The likelihood of a positive genomic (g) DNA result was significantly higher for biopsies from large blastocysts (96%) than from smaller embryos (70-85%). In total, 38% of biopsies were positive for Y chromosome DNA (Y-DNA) and were diagnosed as male. Subsequently, 95% of Y-DNA-positive embryos were confirmed as male and 78% of Y-DNA-negative embryos were confirmed as female. The accuracy of prediction of female (Y-DNA negative) was significantly higher when the biopsy sample was probed for Y-DNA only compared with probing for both gDNA and Y-DNA. We estimate that by transferring only Y-DNA-negative embryos, 3% of potential female pregnancies may have been lost, and production of male pregnancies was reduced by 72%.
Collapse
Affiliation(s)
- F L Riera
- Centro de Reproducción Equina Doña Pilar, Ruta 188, Km 200, (6070) Lincoln (B), Argentina; and Laboratorio de Biotecnologia Reproductiva Prof. Robert M. Kenney, Sargento Cabral 748, (1669) La Lonja (B), Argentina
| | - J E Roldán
- Centro de Reproducción Equina Doña Pilar, Ruta 188, Km 200, (6070) Lincoln (B), Argentina; and Laboratorio de Biotecnologia Reproductiva Prof. Robert M. Kenney, Sargento Cabral 748, (1669) La Lonja (B), Argentina
| | - J M Espinosa
- Centro de Reproducción Equina Doña Pilar, Ruta 188, Km 200, (6070) Lincoln (B), Argentina; and Laboratorio de Biotecnologia Reproductiva Prof. Robert M. Kenney, Sargento Cabral 748, (1669) La Lonja (B), Argentina
| | - J E Fernandez
- Centro de Reproducción Equina Doña Pilar, Ruta 188, Km 200, (6070) Lincoln (B), Argentina
| | - I Ortiz
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, 4466 TAMU, Texas A&M University, College Station, TX 77843-4466, USA
| | - K Hinrichs
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, 4466 TAMU, Texas A&M University, College Station, TX 77843-4466, USA; and Corresponding author.
| |
Collapse
|
11
|
Martinez EA, Martinez CA, Cambra JM, Maside C, Lucas X, Vazquez JL, Vazquez JM, Roca J, Rodriguez-Martinez H, Gil MA, Parrilla I, Cuello C. Achievements and future perspectives of embryo transfer technology in pigs. Reprod Domest Anim 2020; 54 Suppl 4:4-13. [PMID: 31625238 DOI: 10.1111/rda.13465] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 04/25/2019] [Indexed: 12/17/2022]
Abstract
Commercial embryo transfer (ET) has unprecedented productive and economic implications for the pig sector. However, pig ET has been considered utopian for decades mainly because of the requirements of surgical techniques for embryo collection and embryo deposition into recipients, alongside challenges to preserve embryos. This situation has drastically changed in the last decade since the current technology allows non-surgical ET and short- and long-term embryo preservation. Here, we provide a brief review of the improvements in porcine ET achieved by our laboratory in the past 20 years. This review includes several aspects of non-surgical ET technology and different issues affecting ET programmes and embryo preservation systems. The future perspectives of ET technology are also considered. We will refer only to embryos produced in vivo since they are the only type of embryos with possible short-term use in pig production.
Collapse
Affiliation(s)
- Emilio A Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB-Arrixaca), El Palmar, Murcia, Spain
| | - Cristina A Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Department of Clinical & Experimental Medicine (IKE), Linköping University, Linköping, Sweden
| | - Josep M Cambra
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB-Arrixaca), El Palmar, Murcia, Spain
| | - Carolina Maside
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB-Arrixaca), El Palmar, Murcia, Spain
| | - Xiomara Lucas
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB-Arrixaca), El Palmar, Murcia, Spain
| | - Jose L Vazquez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB-Arrixaca), El Palmar, Murcia, Spain
| | - Juan Maria Vazquez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB-Arrixaca), El Palmar, Murcia, Spain
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB-Arrixaca), El Palmar, Murcia, Spain
| | | | - Maria Antonia Gil
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB-Arrixaca), El Palmar, Murcia, Spain
| | - Inmaculada Parrilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB-Arrixaca), El Palmar, Murcia, Spain
| | - Cristina Cuello
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB-Arrixaca), El Palmar, Murcia, Spain
| |
Collapse
|
12
|
Porcine blastocyst viability and developmental potential is maintained for 48 h of liquid storage at 25 °C without CO 2 gassing. Theriogenology 2019; 135:46-55. [PMID: 31200096 DOI: 10.1016/j.theriogenology.2019.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 12/17/2022]
Abstract
Short- and medium-term storage of pig embryos has become relevant for commercial application of non-surgical deep uterine embryo transfer (NsDU-ET) in the light of the strict legal and administrative requirements posed by the International Association for Air Transport (IATA) to allow shipment of liquid nitrogen (LN2) containers and the technical drawbacks when using vitrified embryos. Therefore, this study developed an efficient method for the liquid storage of in vivo-derived porcine blastocysts for a moderate duration (48 h) without controlled CO2 gassing. We evaluated two storage temperatures (25 °C and 37 °C) and three HEPES-supplemented media: the chemically defined media TL-PVA and NCSU-PVA and the semi-defined medium NCSU-BSA. We observed no differences in survival, hatching rate or final developmental stage between the two temperatures, but storage at 25 °C was more efficient to preserve zona pellucida (ZP) integrity. Blastocysts were successfully stored for 24 h in a chemically defined medium. Yet, only 48 h storage in NCSU-BSA medium supported blastocyst development. Although all storage conditions resulted in an embryonic developmental delay, blastocysts stored in NCSU-BSA at either tested temperature could hatch and attain the same final developmental stage as control blastocysts when cultured under standard conditions after storage. Moreover, blastocysts stored at 25 °C for 48 h in NCSU-BSA medium could produce pregnancies after surgical transfer. In conclusion, porcine blastocysts maintain their viability and developmental potential after storage in the semi-defined medium NCSU-BSA for at least 48 h at 25 °C.
Collapse
|
13
|
Martinez CA, Cambra JM, Nohalez A, Parrilla I, Roca J, Vazquez JL, Rodriguez-Martinez H, Gil MA, Martinez EA, Cuello C. Prevention of hatching of porcine morulae and blastocysts by liquid storage at 20 °C. Sci Rep 2019; 9:6219. [PMID: 30996298 PMCID: PMC6470143 DOI: 10.1038/s41598-019-42712-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/01/2019] [Indexed: 11/24/2022] Open
Abstract
Vitrification is the ideal method for long-lasting storage of porcine embryos. However, both strict airline regulations for transport of liquid nitrogen dewars and the technical problems experienced when vitrified embryos are transferred using non-surgical procedures have led to the introduction of alternative storage methods, such as preserving embryos in liquid state. This study evaluated whether a pH-stable medium containing high concentrations of either foetal calf serum (FCS; 50%) or BSA (4%) combined with storage at temperatures of 17 °C or 20 °C maintained in vivo-derived morulae and blastocysts alive and unhatched (a sanitary requirement for embryo transportation) during 72 h of storage. Neither FCS nor BSA supplements were able to counteract the negative effect of low temperatures (17 °C) on embryonic survival after storage. At 20 °C, the protective effect of FCS or BSA depended on embryo stage. While FCS successfully arrested embryo development of only blastocysts, BSA arrested the development of both morulae and blastocysts. Over 80% of BSA arrested embryos restarted development by conventional culture and progressed to further embryonic stages, including hatching. In conclusion, porcine morulae and blastocysts can survive and remain unhatched during at least 72 h when stored at 20 °C in a BSA-containing medium.
Collapse
Affiliation(s)
- Cristina A Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Carretera Buenavista s/n, 30120, El Palmar, Murcia, Spain
| | - Josep M Cambra
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Carretera Buenavista s/n, 30120, El Palmar, Murcia, Spain
| | - Alicia Nohalez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Carretera Buenavista s/n, 30120, El Palmar, Murcia, Spain
| | - Inmaculada Parrilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Carretera Buenavista s/n, 30120, El Palmar, Murcia, Spain
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Carretera Buenavista s/n, 30120, El Palmar, Murcia, Spain
| | - Jose L Vazquez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Carretera Buenavista s/n, 30120, El Palmar, Murcia, Spain
| | | | - Maria A Gil
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Carretera Buenavista s/n, 30120, El Palmar, Murcia, Spain
| | - Emilio A Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Carretera Buenavista s/n, 30120, El Palmar, Murcia, Spain.
| | - Cristina Cuello
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Carretera Buenavista s/n, 30120, El Palmar, Murcia, Spain
| |
Collapse
|
14
|
Thi Nguyen N, Hirata M, Tanihara F, Hirano T, Le QA, Nii M, Otoi T. Hypothermic storage of porcine zygotes in serum supplemented with chlorogenic acid. Reprod Domest Anim 2019; 54:750-755. [PMID: 30788874 DOI: 10.1111/rda.13417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/08/2019] [Indexed: 12/14/2022]
Abstract
The current study was conducted to investigate the effects of 100% foetal bovine serum (FBS) and 100% porcine follicular fluid (pFF) as a storage medium on the developmental competence of porcine zygotes stored at 25°C for 24 hr. Moreover, we evaluated the additive effects of chlorogenic acid (CGA) in the storage medium. When in vitro-produced zygotes were stored at 25°C for 24 hr in tubes containing either tissue culture medium (TCM) 199 supplemented with 1 mg/ml bovine serum albumin (BSA), 100% of FBS or 100% of pFF, the rate of blastocyst formation was significantly higher in 100% of FBS than in BSA-containing TCM 199. When the effects of CGA supplementation in 100% of FBS on the development of zygotes stored at 25°C for 24 hr was evaluated, more zygotes stored with 50 µM CGA developed to blastocysts compared with the other concentrations of CGA. When the formation date and quality of blastocysts derived from zygotes stored in 100% of FBS supplemented with 50 µM CGA were investigated, the highest ratio of blastocysts formation in the storage group appeared 1 day later than in the non-stored control group. However, a higher proportion of blastocysts with apoptotic nuclei was observed in the stored group as compared to the non-stored group. In conclusion, 100% of FBS is available for a short storage medium of porcine zygotes. The supplementation of 50 µM CGA into the storage medium improves the rates of blastocyst formation of zygotes after storage, but the quality of embryos from the stored zygotes remains to be improved.
Collapse
Affiliation(s)
- Nhien Thi Nguyen
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Maki Hirata
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Fuminori Tanihara
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Takayuki Hirano
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Quynh Anh Le
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Masahiro Nii
- Tokushima Prefectural Livestock Research Institute, Tokushima, Japan
| | - Takeshige Otoi
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| |
Collapse
|