1
|
Ferrer-Roda M, Izquierdo D, Gil A, Oliveira MEF, Paramio MT. Oocyte Competence of Prepubertal Sheep and Goat Oocytes: An Assessment of Large-Scale Chromatin Configuration and Epidermal Growth Factor Receptor Expression in Oocytes and Cumulus Cells. Int J Mol Sci 2024; 25:4474. [PMID: 38674059 PMCID: PMC11049957 DOI: 10.3390/ijms25084474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The oocyte competence of prepubertal females is lower compared to that of adults, mainly because they originate from small follicles. In adult females, the germinal vesicle (GV) and epidermal growth factor receptor (EGFR) have been associated with oocyte competence. This study aimed to analyze GV chromatin configuration and EGFR expression in prepubertal goat and sheep oocytes obtained from small (<3 mm) and large (≥3 mm) follicles and compare them with those from adults. GV chromatin was classified from diffuse to condensed as GV1, GVn, and GVc for goats and NSN, SN, and SNE for sheep. EGFR was quantified in cumulus cells (CCs) by Western blotting and in oocytes by immunofluorescence. Oocytes from prepubertal large follicles and adults exhibited highly condensed chromatin in goats (71% and 69% in GVc, respectively) and sheep (59% and 75% in SNE, respectively). In both species, EGFR expression in CCs and oocytes was higher in prepubertal large follicles than in small ones. In adult females, EGFR expression in oocytes was higher than in prepubertal large follicles. In conclusion, GV configuration and EGFR expression in CCs and oocytes were higher in the large than small follicles of prepubertal females.
Collapse
Affiliation(s)
- Mònica Ferrer-Roda
- Department of Animal and Food Science, Veterinary Faculty, Autonomous University of Barcelona, 08193 Barcelona, Spain; (M.F.-R.); (D.I.); (A.G.); (M.E.F.O.)
| | - Dolors Izquierdo
- Department of Animal and Food Science, Veterinary Faculty, Autonomous University of Barcelona, 08193 Barcelona, Spain; (M.F.-R.); (D.I.); (A.G.); (M.E.F.O.)
| | - Ana Gil
- Department of Animal and Food Science, Veterinary Faculty, Autonomous University of Barcelona, 08193 Barcelona, Spain; (M.F.-R.); (D.I.); (A.G.); (M.E.F.O.)
| | - Maria Emilia Franco Oliveira
- Department of Animal and Food Science, Veterinary Faculty, Autonomous University of Barcelona, 08193 Barcelona, Spain; (M.F.-R.); (D.I.); (A.G.); (M.E.F.O.)
- School of Agricultural and Veterinarian Sciences, São Paulo State University, São Paulo 14884-900, Brazil
| | - Maria-Teresa Paramio
- Department of Animal and Food Science, Veterinary Faculty, Autonomous University of Barcelona, 08193 Barcelona, Spain; (M.F.-R.); (D.I.); (A.G.); (M.E.F.O.)
| |
Collapse
|
2
|
Ebrahimi M, Dattena M, Luciano AM, Succu S, Gadau SD, Mara L, Chessa F, Berlinguer F. In vitro culture of sheep early-antral follicles: Milestones, challenges and future perspectives. Theriogenology 2024; 213:114-123. [PMID: 37839290 DOI: 10.1016/j.theriogenology.2023.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/05/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023]
Abstract
Early antral follicles (EAFs) represent the transitional stage between pre-antral and antral follicles, containing oocytes that have completed most of their growth phase. Therefore, they offer an easily exploitable reserve for producing mature oocytes and preserving genetic resources, given their higher abundance compared to antral follicles (AFs) and shorter culture period than other pre-antral follicles (PAFs). Despite these advantages, the culture of EAFs remains challenging, and the success rates of in vitro embryo production (IVEP) from EAF-derived oocytes are still far below the standard achieved with fully grown oocytes in ruminant species. The difficulty is related to developing suitable in vitro culture systems tailored with nutrients, growth factors, and other signaling molecules to support oocyte growth. In this review, we focus on the in vitro development of sheep EAFs to provide an informative reference to current research progress. We also summarize the basic aspect of folliculogenesis in sheep and the main achievements and limitations of the current methods for EAF isolation, in vitro culture systems, and medium supplementation. Finally, we highlight future perspectives and challenges for improving EAF culture outcomes.
Collapse
Affiliation(s)
- Mohammadreza Ebrahimi
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, Sassari, Italy; Department of Animal Science, Agricultural Research Agency of Sardinia, 07100, Sassari, Italy.
| | - Maria Dattena
- Department of Animal Science, Agricultural Research Agency of Sardinia, 07100, Sassari, Italy
| | - Alberto Maria Luciano
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università, 6, 26900, Lodi, Italy
| | - Sara Succu
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, Sassari, Italy
| | - Sergio Domenico Gadau
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, Sassari, Italy
| | - Laura Mara
- Department of Animal Science, Agricultural Research Agency of Sardinia, 07100, Sassari, Italy
| | - Fabrizio Chessa
- Department of Animal Science, Agricultural Research Agency of Sardinia, 07100, Sassari, Italy
| | - Fiammetta Berlinguer
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, Sassari, Italy
| |
Collapse
|
3
|
Souza-Fabjan JMG, Leal GR, Monteiro CAS, Batista RITP, Barbosa NO, Freitas VJF. In vitro embryo production in small ruminants: what is still missing? Anim Reprod 2023; 20:e20230055. [PMID: 38025995 PMCID: PMC10681138 DOI: 10.1590/1984-3143-ar2023-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/18/2023] [Indexed: 12/01/2023] Open
Abstract
In vitro embryo production (IVEP) is an extremely important tool for genetic improvement in livestock and it is the biotechnology that has grown the most recently. However, multiple ovulation followed by embryo transfer is still considered the leading biotechnology for embryo production in small ruminants. This review aimed to identify what is still missing for more efficient diffusion of IVEP in small ruminants, going through the IVEP steps and highlighting the main factors affecting the outcomes. Oocyte quality is essential for the success of IVEP and an aspect to be considered in small ruminants is their reproductive seasonality and strategies to mitigate the effect of season. The logistics for oocyte collection from live females is more complex than in cattle, and tools to simplify this collection system and/or to promote an alternative way of recovering oocytes may be an important point in this scenario. The heterogeneity of oocytes collected from growing follicles in live females or from ovaries collected from abattoirs remains a challenge, and there is a demand to standardize/homogenize the hormonal stimulatory protocols and IVM protocols for each source of oocytes. The use of sexed semen is technically possible, however the low market demand associated with the high costs of the sexing process prevents the routine use of this technique, but its higher availability is an important aspect aiming for greater dissemination of IVEP. New noninvasive approaches for embryo selection are key factors since the selection for transfer or cryopreservation is another difficulty faced among laboratories. Embryo selection is based on morphological traits, although these are not necessarily reliable in predicting pregnancy. Several issues described in this review must be considered by researchers in other to promote the diffusion of IVEP in small ruminants.
Collapse
Affiliation(s)
| | - Gabriela Ramos Leal
- Faculdade de Veterinária, Universidade Federal Fluminense, Niterói, RJ, Brasil
| | | | | | | | - Vicente José Figueirêdo Freitas
- Laboratório de Fisiologia e Controle da Reprodução, Faculdade de Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| |
Collapse
|
4
|
Shi C, Yan Z, Zhang Y, Qin L, Wu W, Gao C, Gao L, Liu J, Cui Y. Effects of putrescine on the quality and epigenetic modification of mouse oocytes during in vitro maturation. Reprod Fertil Dev 2022; 34:957-970. [PMID: 36031717 DOI: 10.1071/rd22064] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 07/29/2022] [Indexed: 11/23/2022] Open
Abstract
CONTEXT Low ovarian putrescine levels and decreased peak values following luteinising hormone peaks are related to poor oocyte quantity and quality in ageing women. AIMS To investigate the effects of putrescine supplementation in in vitro maturation (IVM) medium on oocyte quality and epigenetic modification. METHODS Germinal vesicle oocytes retrieved from the ovaries of 8-week-old and 9-month-old mice were divided into four groups (the young, young+difluoromethylornithine (DFMO), ageing and ageing+putrescine groups) and cultured in IVM medium with or without 1mM putrescine or DFMO for 16h. The first polar body extrusion (PBE), cleavage and embryonic development were evaluated. Spindles, chromosomes, mitochondria and reactive oxygen species (ROS) were measured. The expression levels of SIRT1, H3K9ac, H3K9me2, H3K9me3, and 5mC levels were evaluated. Sirt1 and imprinted genes were detected. RESULTS The PBE was higher in the ageing+putrescine group than in the ageing group. Putrescine increased the total and inner cell mass cell numbers of blastocysts in ageing oocytes. Putrescine decreased aberrant spindles and chromosome aneuploidy, increased the mitochondrial membrane potential and decreased ROS levels. Putrescine increased SIRT1 expression and attenuated the upregulation of H3K9ac levels in ageing oocytes. Putrescine did not affect 5mC, H3K9me2 or H3K9me3 levels or imprinted gene expression. CONCLUSIONS Putrescine supplementation during IVM improved the maturation and quality of ageing oocytes and promoted embryonic development by decreasing ROS generation, maintaining mitochondrial and spindle function and correcting aberrant epigenetic modification. IMPLICATIONS Putrescine shows application potential for human-assisted reproduction, especially for IVM of oocytes from ageing women.
Collapse
Affiliation(s)
- Chennan Shi
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Zhengjie Yan
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Yuexin Zhang
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Lianju Qin
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Wei Wu
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Chao Gao
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Li Gao
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Yugui Cui
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| |
Collapse
|
5
|
Ramos-Ibeas P, González-Brusi L, Used MT, Cocero MJ, Marigorta P, Alberio R, Bermejo-Álvarez P. In vitro culture of ovine embryos up to early gastrulating stages. Development 2022; 149:274801. [PMID: 35319748 PMCID: PMC8977095 DOI: 10.1242/dev.199743] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 02/03/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Developmental failures occurring shortly after blastocyst hatching from the zona pellucida constitute a major cause of pregnancy losses in both humans and farm ungulates. The developmental events occurring following hatching in ungulates include the proliferation and maturation of extra-embryonic membranes – trophoblast and hypoblast – and the formation of a flat embryonic disc, similar to that found in humans, which initiates gastrulation prior to implantation. Unfortunately, our understanding of these key processes for embryo survival is limited because current culture systems cannot sustain ungulate embryo development beyond hatching. Here, we report a culture system that recapitulates most developmental landmarks of gastrulating ovine embryos: trophoblast maturation, hypoblast migration, embryonic disc formation, disappearance of the Rauber's layer, epiblast polarization and mesoderm differentiation. Our system represents a highly valuable platform for exploring the cell differentiation, proliferation and migration processes governing gastrulation in a flat embryonic disc and for understanding pregnancy failures during the second week of gestation.
This article has an associated ‘The people behind the papers’ interview.
Collapse
Affiliation(s)
| | | | | | | | - Pilar Marigorta
- Animal Reproduction Department, INIA-CSIC, Madrid 28040, Spain
| | - Ramiro Alberio
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, LE12 5RD, UK
| | | |
Collapse
|
6
|
Yao MH, Cheng WJ, Liu LW, Zheng H, Gu WY, Miao F, Zhang JF, Wang L, Su YP, Liu YL, Sui HS. Relationship between chromatin configuration and in vitro maturation ability in guinea pig oocytes. Vet Med Sci 2021; 7:2410-2417. [PMID: 34409767 PMCID: PMC8604138 DOI: 10.1002/vms3.596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Germinal vesicle (GV) chromatin configurations of oocytes are proposed to be related to oocyte competence and may reflect the quality of oocyte. Currently, a limited number of published studies investigated the GV chromatin configurations of guinea pig oocytes. Objective In this study on the in vitro maturation (IVM) of guinea pig oocytes, we examined the changes in their GV chromatin configurations during meiotic progression. Methods Based on the degree of chromatin compaction, the GV chromatin configurations of guinea pig oocytes could be divided into three categories depending on whether the nucleolus‐like body (NLB) was surrounded or partly surrounded by compacted chromatin, namely the uncondensed (NSN), the intermediate type (SN‐1) and the compacted type (SN‐2). Results The percentage of cells displaying the SN‐2 configuration increased with the growth of guinea pig oocytes, suggesting that this configuration presents the potential for maturation in oocytes. Oocytes derived from larger follicle exhibited increased meiotic potential. Serum starvation affected the GV chromatin configurations of guinea pig oocytes. Conclusions Collectively, these results suggest that the SN‐2 type might be a more mature form of configuration in guinea pig oocyte, whose proportion was associated with the follicle size and susceptible to the environment (e.g. serum concentration).
Collapse
Affiliation(s)
- Min-Hua Yao
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong Province, China
| | - Wan-Jing Cheng
- Department of Pathology, Hainan General Hospital, Haikou, Hainan Province, China
| | - Li-Wei Liu
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong Province, China
| | - Hui Zheng
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong Province, China
| | - Wan-Ying Gu
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong Province, China
| | - Fang Miao
- Department of Pathology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong Province, China
| | - Jing-Fang Zhang
- Department of Pathology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong Province, China
| | - Li Wang
- Department of Pathology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong Province, China
| | - Yan-Ping Su
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong Province, China
| | - Ya-Ling Liu
- Department of Pathology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong Province, China
| | - Hong-Shu Sui
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong Province, China
| |
Collapse
|
7
|
Souza-Fabjan JMG, Batista RITP, Correia LFL, Paramio MT, Fonseca JF, Freitas VJF, Mermillod P. In vitro production of small ruminant embryos: latest improvements and further research. Reprod Fertil Dev 2021; 33:31-54. [PMID: 38769678 DOI: 10.1071/rd20206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
This review presents the latest advances in and main obstacles to the application of invitro embryo production (IVEP) systems in small ruminants. This biotechnology is an extremely important tool for genetic improvement for livestock and is essential for the establishment of other biotechnologies, such as cloning and transgenesis. At present, the IVEP market is almost non-existent for small ruminants, in contrast with the trends observed in cattle. This is probably related to the lower added value of small ruminants, lower commercial demand and fewer qualified professionals interested in this area. Moreover, there are fewer research groups working on small ruminant IVEP than those working with cattle and pigs. The heterogeneity of oocytes collected from growing follicles in live females or from ovaries collected from abattoirs remains a challenge for IVEP dissemination in goats and sheep. Of note, although the logistics of oocyte collection from live small ruminant females are more complex than in the bovine, in general the IVEP outcomes, in terms of blastocyst production, are similar. We anticipate that after appropriate training and repeatable results, the commercial demand for small ruminant invitro -produced embryos may increase.
Collapse
Affiliation(s)
- Joanna M G Souza-Fabjan
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Niterói-RJ, CEP 24230-340, Brazil; and Corresponding author
| | - Ribrio I T P Batista
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Niterói-RJ, CEP 24230-340, Brazil
| | - Lucas F L Correia
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Niterói-RJ, CEP 24230-340, Brazil
| | - Maria Teresa Paramio
- Departament de Ciencia Animal i dels Aliments, Facultat de Veterinaria, Universitat Autonoma de Barcelona, 08193 Cerdanyola del Valles, Barcelona, Spain
| | - Jeferson F Fonseca
- Embrapa Caprinos e Ovinos, Rodovia MG 133, km 42, Campo Experimental Coronel Pacheco, Coronel Pacheco-MG, CEP 36155-000, Brazil
| | - Vicente J F Freitas
- Laboratório de Fisiologia e Controle da Reprodução, Universidade Estadual do Ceará, Fortaleza-CE, CEP 60714-903, Brazil
| | - Pascal Mermillod
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), UMR7247, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| |
Collapse
|