1
|
Shafiei G, Talaei SA, Enderami SE, Mahabady MK, Mahabadi JA. Pluripotent stem cell-derived gametes: A gap for infertility treatment and reproductive medicine in the future. Tissue Cell 2025; 95:102904. [PMID: 40203683 DOI: 10.1016/j.tice.2025.102904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/26/2025] [Accepted: 03/29/2025] [Indexed: 04/11/2025]
Abstract
Infertility affects 10-15 % of reproductive-age couples worldwide, with male infertility linked to sperm dysfunction and female infertility caused by ovulation disorders and reproductive abnormalities. Stem cell research presents a promising avenue for infertility treatment through germ cell differentiation. However, standardizing differentiation protocols and ensuring the functionality of in vitro-derived gametes remain significant challenges before clinical application becomes feasible.
Collapse
Affiliation(s)
- Golnaz Shafiei
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Sayyed Alireza Talaei
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Ehsan Enderami
- Immunogenetics Research Center, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Javad Amini Mahabadi
- Gametogenesis Research Center, Kashan University of Medical Science, Kashan, Iran.
| |
Collapse
|
2
|
Ziętek MM, Bihorac A, Wenta-Muchalska E, Duszewska AM, Olech W, Sampino S, Bernat A. Wisent Somatic Cells Resist Reprogramming by the PiggyBac Transposon System: A Case Study Highlighting Methodological and Conservation Hurdles. Int J Mol Sci 2025; 26:4327. [PMID: 40362564 PMCID: PMC12072796 DOI: 10.3390/ijms26094327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/10/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
The European wisent (Bison bonasus), an iconic yet genetically vulnerable species, faces ongoing conservation challenges due to a restricted gene pool. Advances in induced pluripotent stem cell (iPSC) technology offer promising prospects for preserving and restoring genetic diversity in endangered species. In this study, we sought to reprogram wisent somatic cells into iPSCs using the PiggyBac transposon system, a non-viral method known for being successfully applied in bovine species. We applied a six-factor reprogramming cocktail (OCT4, SOX2, KLF4, LIN28, c-MYC, NANOG) alongside small-molecule enhancers to fibroblasts isolated from adult wisent tissue. While initial colony formation was observed, the reprogrammed cells exhibited limited proliferation and failed to maintain stable pluripotency, suggesting intrinsic barriers to complete reprogramming. Despite optimizing culture conditions, including hypoxia and extracellular matrix modifications, the reprogramming efficiency remained low. Our findings indicate that wisent somatic cells may require alternative reprogramming strategies, such as new-generation delivery systems and epigenetic modulators, to achieve stable iPSC lines. This study underscores the need for species-specific optimization of reprogramming protocols and highlights the potential of emerging cellular technologies for conservation efforts. Future research integrating advanced reprogramming tools may pave the way for genetic rescue strategies in wisent and other endangered species.
Collapse
Affiliation(s)
- Marta Marlena Ziętek
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Ajna Bihorac
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Elżbieta Wenta-Muchalska
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Anna Maria Duszewska
- Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warszawa, Poland
| | - Wanda Olech
- Department of Animal Genetics and Conservation, Faculty of Animal Science, Warsaw University of Life Sciences, 02-787 Warszawa, Poland
| | - Silvestre Sampino
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Agnieszka Bernat
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk & Medical University of Gdansk, 80-307 Gdansk, Poland
| |
Collapse
|
3
|
Li CJ, Chang CC, Tsai LK, Peng M, Lyu WN, Yu JF, Tsai MH, Sung LY. Generation of induced pluripotent stem cells from Bornean orangutans. Front Cell Dev Biol 2024; 11:1331584. [PMID: 38250322 PMCID: PMC10797036 DOI: 10.3389/fcell.2023.1331584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction: Orangutans, classified under the Pongo genus, are an endangered non-human primate (NHP) species. Derivation of induced pluripotent stem cells (iPSCs) represents a promising avenue for conserving the genetic resources of these animals. Earlier studies focused on deriving orangutan iPSCs (o-iPSCs) from Sumatran orangutans (Pongo abelii). To date, no reports specifically target the other Critically Endangered species in the Pongo genus, the Bornean orangutans (Pongo pygmaeus). Methods: Using Sendai virus-mediated Yamanaka factor-based reprogramming of peripheral blood mononuclear cells to generate iPSCs (bo-iPSCs) from a female captive Bornean orangutan. In this study, we evaluate the colony morphology, pluripotent markers, X chromosome activation status, and transcriptomic profile of the bo-iPSCs to demonstrate the pluripotency of iPSCs from Bornean orangutans. Results: The bo-iPSCs were successfully derived from Bornean orangutans, using Sendai virus-mediated Yamanaka factor-based reprogramming of peripheral blood mononuclear cells. When a modified 4i/L/A (m4i/L/A) culture system was applied to activate the WNT signaling pathway in these bo-iPSCs, the derived cells (m-bo-iPSCs) manifested characteristics akin to human naive pluripotent stem cells, including high expression levels of KLF17, DNMT3L, and DPPA3/5, as well as the X chromosome reactivation. Comparative RNA-seq analysis positioned the m-bo-iPSCs between human naive and formative pluripotent states. Furthermore, the m-bo-iPSCs express differentiation capacity into all three germlines, evidenced by controlled in vitro embryoid body formation assay. Discussion: Our work establishes a novel approach to preserve the genetic diversity of endangered Bornean orangutans while offering insights into primate stem cell pluripotency. In the future, derivation of the primordial germ cell-like cells (PGCLCs) from m-bo-iPSCs is needed to demonstrate the further specific application in species preservation and broaden the knowledge of primordial germ cell specification across species.
Collapse
Affiliation(s)
- Chia-Jung Li
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Branch, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Chun Chang
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Li-Kuang Tsai
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Min Peng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Wei-Ni Lyu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Jane-Fang Yu
- Conservation and Research Center, Taipei Zoo, Taipei, Taiwan
| | - Mong-Hsun Tsai
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Li-Ying Sung
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Center for Developmental Biology and Regenerative Medicine, Taipei, Taiwan
- Center for Biotechnology, National Taiwan University, Taipei, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
4
|
Swegen A, Appeltant R, Williams SA. Cloning in action: can embryo splitting, induced pluripotency and somatic cell nuclear transfer contribute to endangered species conservation? Biol Rev Camb Philos Soc 2023; 98:1225-1249. [PMID: 37016502 DOI: 10.1111/brv.12951] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 04/06/2023]
Abstract
The term 'cloning' refers to the production of genetically identical individuals but has meant different things throughout the history of science: a natural means of reproduction in bacteria, a routine procedure in horticulture, and an ever-evolving gamut of molecular technologies in vertebrates. Mammalian cloning can be achieved through embryo splitting, somatic cell nuclear transfer, and most recently, by the use of induced pluripotent stem cells. Several emerging biotechnologies also facilitate the propagation of genomes from one generation to the next whilst bypassing the conventional reproductive processes. In this review, we examine the state of the art of available cloning technologies and their progress in species other than humans and rodent models, in order to provide a critical overview of their readiness and relevance for application in endangered animal conservation.
Collapse
Affiliation(s)
- Aleona Swegen
- Nuffield Department of Women's and Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Priority Research Centre for Reproductive Science, University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Ruth Appeltant
- Nuffield Department of Women's and Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Gamete Research Centre, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Suzannah A Williams
- Nuffield Department of Women's and Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| |
Collapse
|
5
|
Meinecke B, Meinecke-Tillmann S. Lab partners: oocytes, embryos and company. A personal view on aspects of oocyte maturation and the development of monozygotic twins. Anim Reprod 2023; 20:e20230049. [PMID: 37547564 PMCID: PMC10399133 DOI: 10.1590/1984-3143-ar2023-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/12/2023] [Indexed: 08/08/2023] Open
Abstract
The present review addresses the oocyte and the preimplantation embryo, and is intended to highlight the underlying principle of the "nature versus/and nurture" question. Given the diversity in mammalian oocyte maturation, this review will not be comprehensive but instead will focus on the porcine oocyte. Historically, oogenesis was seen as the development of a passive cell nursed and determined by its somatic compartment. Currently, the advanced analysis of the cross-talk between the maternal environment and the oocyte shows a more balanced relationship: Granulosa cells nurse the oocyte, whereas the latter secretes diffusible factors that regulate proliferation and differentiation of the granulosa cells. Signal molecules of the granulosa cells either prevent the precocious initiation of meiotic maturation or enable oocyte maturation following hormonal stimulation. A similar question emerges in research on monozygotic twins or multiples: In Greek and medieval times, twins were not seen as the result of the common course of nature but were classified as faults. This seems still valid today for the rare and until now mainly unknown genesis of facultative monozygotic twins in mammals. Monozygotic twins are unique subjects for studies of the conceptus-maternal dialogue, the intra-pair similarity and dissimilarity, and the elucidation of the interplay between nature and nurture. In the course of in vivo collections of preimplantation sheep embryos and experiments on embryo splitting and other microsurgical interventions we recorded observations on double blastocysts within a single zona pellucida, double inner cell masses in zona-enclosed blastocysts and double germinal discs in elongating embryos. On the basis of these observations we add some pieces to the puzzle of the post-zygotic genesis of monozygotic twins and on maternal influences on the developing conceptus.
Collapse
Affiliation(s)
- Burkhard Meinecke
- Institut für Reproduktionsbiologie, Tierärztliche Hochschule Hannover, Hanover, Germany
- Ambulatorische und Geburtshilfliche Veterinärklinik, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Sabine Meinecke-Tillmann
- Institut für Reproduktionsbiologie, Tierärztliche Hochschule Hannover, Hanover, Germany
- Institut für Tierzucht und Haustiergenetik, Justus-Liebig-Universität Giessen, Giessen, Germany
| |
Collapse
|
6
|
Wesevich VG, Arkfeld C, Seifer DB. In Vitro Gametogenesis in Oncofertility: A Review of Its Potential Use and Present-Day Challenges in Moving toward Fertility Preservation and Restoration. J Clin Med 2023; 12:3305. [PMID: 37176745 PMCID: PMC10179531 DOI: 10.3390/jcm12093305] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Current fertility preservation options are limited for cancer survivor patients who wish to have their own biological children. Human in vitro gametogenesis (IVG) has the hypothetical ability to offer a unique solution to individuals receiving treatment for cancer which subsequently shortens their reproductive lifespan. Through a simple skin punch biopsy, a patient's fertility could be restored via reprogramming of dermal fibroblast cells to induced pluripotent stem cells, then from primordial germ cell-like cells into viable oocytes and spermatocytes which could be used for embryogenesis. Induced pluripotent stem cells could also be used to form in vitro environments, similar to the ovary or testes, necessary for the maturation of oogonia. This would allow for the entire creation of embryos outside the body, ex vivo. While this area in stem cell biology research offers the potential to revolutionize reproduction as we know it, there are many critical barriers, both scientific and ethical, that need to be overcome to one day see this technology utilized clinically.
Collapse
Affiliation(s)
- Victoria G Wesevich
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
| | - Christopher Arkfeld
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale New Haven Hospital, New Haven, CT 06510, USA
| | - David B Seifer
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
7
|
Bolton RL, Mooney A, Pettit MT, Bolton AE, Morgan L, Drake GJ, Appeltant R, Walker SL, Gillis JD, Hvilsom C. Resurrecting biodiversity: advanced assisted reproductive technologies and biobanking. REPRODUCTION AND FERTILITY 2022; 3:R121-R146. [PMID: 35928671 PMCID: PMC9346332 DOI: 10.1530/raf-22-0005] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
Biodiversity is defined as the presence of a variety of living organisms on the Earth that is essential for human survival. However, anthropogenic activities are causing the sixth mass extinction, threatening even our own species. For many animals, dwindling numbers are becoming fragmented populations with low genetic diversity, threatening long-term species viability. With extinction rates 1000-10,000 times greater than natural, ex situ and in situ conservation programmes need additional support to save species. The indefinite storage of cryopreserved (-196°C) viable cells and tissues (cryobanking), followed by assisted or advanced assisted reproductive technology (ART: utilisation of oocytes and spermatozoa to generate offspring; aART: utilisation of somatic cell genetic material to generate offspring), may be the only hope for species' long-term survival. As such, cryobanking should be considered a necessity for all future conservation strategies. Following cryopreservation, ART/aART can be used to reinstate lost genetics back into a population, resurrecting biodiversity. However, for this to be successful, species-specific protocol optimisation and increased knowledge of basic biology for many taxa are required. Current ART/aART is primarily focused on mammalian taxa; however, this needs to be extended to all, including to some of the most endangered species: amphibians. Gamete, reproductive tissue and somatic cell cryobanking can fill the gap between losing genetic diversity today and future technological developments. This review explores species prioritisation for cryobanking and the successes and challenges of cryopreservation and multiple ARTs/aARTs. We here discuss the value of cryobanking before more species are lost and the potential of advanced reproductive technologies not only to halt but also to reverse biodiversity loss. Lay summary The world is undergoing its sixth mass extinction; however, unlike previous events, the latest is caused by human activities and is resulting in the largest loss of biodiversity (all living things on Earth) for 65 million years. With an extinction rate 1000-10,000-fold greater than natural, this catastrophic decline in biodiversity is threatening our own survival. As the number of individuals within a species declines, genetic diversity reduces, threatening their long-term existence. In this review, the authors summarise approaches to indefinitely preserve living cells and tissues at low temperatures (cryobanking) and the technologies required to resurrect biodiversity. In the future when appropriate techniques become available, these living samples can be thawed and used to reinstate genetic diversity and produce live young ones of endangered species, enabling their long-term survival. The successes and challenges of genome resource cryopreservation are discussed to enable a move towards a future of stable biodiversity.
Collapse
Affiliation(s)
- Rhiannon L Bolton
- Nature’s SAFE, Chapel Field Stud, Ash Lane, Whitchurch, Shropshire, UK
| | | | - Matt T Pettit
- Nature’s SAFE, Chapel Field Stud, Ash Lane, Whitchurch, Shropshire, UK
- IMT International Limited, Tattenhall, Chester, UK
| | - Anthony E Bolton
- Nature’s SAFE, Chapel Field Stud, Ash Lane, Whitchurch, Shropshire, UK
| | - Lucy Morgan
- Gemini Genetics, Chapel Field Stud, Ash Lane, Whitchurch, UK
| | | | - Ruth Appeltant
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Women’s Centre, Level 3, John Radcliffe Hospital, Oxford, UK
| | - Susan L Walker
- Nature’s SAFE, Chapel Field Stud, Ash Lane, Whitchurch, Shropshire, UK
- Chester Zoo, Upton-by-Chester, UK
| | - James D Gillis
- South-East Zoo Alliance for Reproduction & Conservation, Yulee, Florida, USA
| | | |
Collapse
|
8
|
Wang DH, Wu XM, Chen JS, Cai ZG, An JH, Zhang MY, Li Y, Li FP, Hou R, Liu YL. Isolation and characterization mesenchymal stem cells from red panda ( Ailurus fulgens styani) endometrium. CONSERVATION PHYSIOLOGY 2022; 10:coac004. [PMID: 35211318 PMCID: PMC8862722 DOI: 10.1093/conphys/coac004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/30/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Endometrial mesenchymal stem cells (eMSCs) are undifferentiated endometrial cells with self-renewal, multidirectional differentiation and high proliferation potential. Nowadays, eMSCs have been found in a few species, but it has never been reported in endangered wild animals, especially the red panda. In this study, we successfully isolated and characterized the eMSCs derived from red panda. Red panda eMSCs were fibroblast-like, had a strong proliferative potential and a stable chromosome number. Pluripotency genes including Klf4, Sox2 and Thy1 were highly expressed in eMSCs. Besides, cultured eMSCs were positive for MSC markers CD44, CD49f and CD105 and negative for endothelial cell marker CD31 and haematopoietic cell marker CD34. Moreover, no reference RNA-seq was used to analyse the eMSCs transcriptional expression profile and key pathways. Compared with skin fibroblast cell group, 9104 differentially expressed genes (DEGs) were identified, among which are 5034 genes upregulated, 4070 genes downregulated and the top 20 enrichment pathways of DEGs in Gene Ontology (GO) and the Kyoto Encyclopedia of Genes Genomes (KEGG) mainly associated with G-protein coupled receptor signalling pathway, carbohydrate derivative binding, nucleoside binding, ribosome biogenesis, cell cycle, DNA replication, Ras signalling pathway and purine metabolism. Among the DEGs, some representative genes about promoting MSCs differentiation and proliferation were upregulated and promoting fibroblasts proliferation were downregulated in eMSCs group. Red panda eMSCs also had multiple differentiation ability and could differentiate into adipocytes, chondrocytes and hepatocytes. In conclusion, we, for the first time, isolated and characterized the red panda eMSCs with ability of multiplication and multilineage differentiation in vitro. The new multipotential stem cell could be beneficial not only for the germ plasm resources conservation of red panda, but also for basic or pre-clinical studies in the future.
Collapse
Affiliation(s)
- Dong-Hui Wang
- Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Academy of Giant Panda, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
| | - Xue-Mei Wu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
| | - Jia-Song Chen
- Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Academy of Giant Panda, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
| | - Zhi-Gang Cai
- Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Academy of Giant Panda, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
| | - Jun-Hui An
- Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Academy of Giant Panda, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
| | - Ming-Yue Zhang
- Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Academy of Giant Panda, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
| | - Yuan Li
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
| | - Fei-Ping Li
- Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Academy of Giant Panda, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Academy of Giant Panda, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
| | - Yu-Liang Liu
- Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Academy of Giant Panda, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
| |
Collapse
|
9
|
The ART of bringing extinction to a freeze - History and future of species conservation, exemplified by rhinos. Theriogenology 2021; 169:76-88. [PMID: 33940218 DOI: 10.1016/j.theriogenology.2021.04.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/18/2022]
Abstract
The ongoing mass extinction of animal species at an unprecedented rate is largely caused by human activities. Progressive habitat destruction and fragmentation is resulting in accelerated loss of biodiversity on a global scale. Over decades, captive breeding programs of non-domestic species were characterized by efforts to optimize species-specific husbandry, to increase studbook-based animal exchange, and to improve enclosure designs. To counter the ongoing dramatic loss of biodiversity, new approaches are warranted. Recently, new ideas, particularly the application of assisted reproduction technologies (ART), have been incorporated into classical zoo breeding programs. These technologies include semen and oocyte collection, artificial insemination, and in-vitro embryo generation. More futuristic ideas of advanced ART (aART) implement recent advances in biotechnology and stem-cell related approaches such as cloning, inner cell mass transfer (ICM), and the stem-cell-associated techniques (SCAT) for the generation of gametes and ultimately embryos of highly endangered species, such as the northern white rhinoceros (Ceratotherium simum cottoni) of which only two female individuals are left. Both, ART and aART greatly depend on and benefit from the rapidly evolving cryopreservation techniques and biobanking not only of genetic, but also of viable cellular materials suitable for the generation of induced pluripotent stem cells (iPSC). The availability of cryopreserved materials bridges gaps in time and space, thereby optimizing the available genetic variability and enhancing the chance to restore viable populations.
Collapse
|